Skip to main content
Top
Published in: Journal of Computational Electronics 1/2019

31-10-2018

EM design and analysis of a substrate integrated waveguide based on a frequency-selective surface for millimeter wave radar application

Authors: V. Krushna Kanth, S. Raghavan

Published in: Journal of Computational Electronics | Issue 1/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Substrate integrated waveguide (SIW) technology makes it possible to realize an entire circuit including a transition, planar circuitry, waveguide components and devices in a single printed circuit board. In this paper, a new approach to design a substrate integrated waveguide using a single square loop and Jerusalem cross frequency-selective surface elements as the top wall in place of a metallic wall, for advanced millimeter wave radar systems is presented. The guided wave and modes operating at the high-frequency range in V-band, typically 40–75 GHz (57–64 GHz in the USA and 59–66 GHz in Japan), has been analyzed. The accurate analytical modeling is used to calculate the complex propagation constant and cut-off frequency of the SIW structure. The propagation constant of the analyzed structured is compared with a conventional SIW, and the wave propagation is presented in all topologies. The leakage and attenuation loss of an electromagnetic wave due to different factors such as dielectric, conductor and radiation are also studied. Finally, the numerical simulation has been performed based on finite element and finite difference time domain to prove the analytical formulation of the proposed structure. The obtained simulation results are encouraging for developing a new type of SIW structure for aerospace applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Wu, K., Deslandes, D., Cassivi, Y.: The substrate integrated circuits—a new concept for high-frequency electronics and optoelectronics. In: TELSKIS 2003, Nis, Serbia and Montenegro (2003) Wu, K., Deslandes, D., Cassivi, Y.: The substrate integrated circuits—a new concept for high-frequency electronics and optoelectronics. In: TELSKIS 2003, Nis, Serbia and Montenegro (2003)
2.
go back to reference Rayas-Sanchez, J.E., Ayala, V.G.: A general em-based design procedure for single-layer substrate integrated waveguide interconnects with microstrip transitions. In: IEEE MTT-S International Microwave Symposium Digest, Atlanta, GA, pp. 983–986 (2008) Rayas-Sanchez, J.E., Ayala, V.G.: A general em-based design procedure for single-layer substrate integrated waveguide interconnects with microstrip transitions. In: IEEE MTT-S International Microwave Symposium Digest, Atlanta, GA, pp. 983–986 (2008)
3.
go back to reference Xu, F., Wu, K.: Guided-wave and leakage characteristics of substrate integrated waveguide. IEEE Trans. Microw. Theory Tech. 53, 66–73 (2005)CrossRef Xu, F., Wu, K.: Guided-wave and leakage characteristics of substrate integrated waveguide. IEEE Trans. Microw. Theory Tech. 53, 66–73 (2005)CrossRef
4.
go back to reference Xu, F., Jiang, X., Wu, K.: Efficient and accurate design of substrate-integrated waveguide circuits synthesised with metallic via-slot arrays. IET Microw. Antennas Propag. 2, 188–193 (2008)CrossRef Xu, F., Jiang, X., Wu, K.: Efficient and accurate design of substrate-integrated waveguide circuits synthesised with metallic via-slot arrays. IET Microw. Antennas Propag. 2, 188–193 (2008)CrossRef
5.
go back to reference Che, W.Q., Li, C.X., Wang, D.P., Xu, L.: Investigation on the ohmic conductor losses in substrate integrated waveguide and equivalent rectangular waveguide. J. Electromagn. Waves Appl. 21, 769–780 (2007)CrossRef Che, W.Q., Li, C.X., Wang, D.P., Xu, L.: Investigation on the ohmic conductor losses in substrate integrated waveguide and equivalent rectangular waveguide. J. Electromagn. Waves Appl. 21, 769–780 (2007)CrossRef
6.
go back to reference Che, W., Deng, K., Wang, D., Chow, Y.L.: Analytical equivalence between substrate-integrated waveguide and rectangular waveguide. IET Microw. Antennas Propag. 2, 35–41 (2008)CrossRef Che, W., Deng, K., Wang, D., Chow, Y.L.: Analytical equivalence between substrate-integrated waveguide and rectangular waveguide. IET Microw. Antennas Propag. 2, 35–41 (2008)CrossRef
7.
go back to reference Che, W., Deng, K., Chow, Y.L.: Equivalence between waveguides with side walls of cylinders (SIRW) and of regular solid sheets. In: Asia-Pacific Microwave Conference Proceedings, p. 3 (2005) Che, W., Deng, K., Chow, Y.L.: Equivalence between waveguides with side walls of cylinders (SIRW) and of regular solid sheets. In: Asia-Pacific Microwave Conference Proceedings, p. 3 (2005)
8.
go back to reference Salehi, M., Mehrshahi, E.: A closed-form formula for dispersion characteristics of fundamental SIW mode. IEEE Microw. Wirel. Compon. Lett. 21, 4–6 (2011)CrossRef Salehi, M., Mehrshahi, E.: A closed-form formula for dispersion characteristics of fundamental SIW mode. IEEE Microw. Wirel. Compon. Lett. 21, 4–6 (2011)CrossRef
9.
go back to reference Cassivi, Y., Perregrini, L., Arcioni, P., Bressan, M., Wu, K., Conciauro, G.: Dispersion characteristics of Substrate integrated rectangular waveguide. IEEE Microw. Wirel. Compon. Lett. 12, 333–335 (2002)CrossRef Cassivi, Y., Perregrini, L., Arcioni, P., Bressan, M., Wu, K., Conciauro, G.: Dispersion characteristics of Substrate integrated rectangular waveguide. IEEE Microw. Wirel. Compon. Lett. 12, 333–335 (2002)CrossRef
10.
go back to reference Deslandes, D., Wu, K.: Integrated Microstrip and rectangular waveguide in planar form. IEEE Microw. Wirel. Compon. Lett. 11, 68–70 (2001)CrossRef Deslandes, D., Wu, K.: Integrated Microstrip and rectangular waveguide in planar form. IEEE Microw. Wirel. Compon. Lett. 11, 68–70 (2001)CrossRef
11.
go back to reference Deslandes, D., Wu, K.: Design consideration and performance analysis of substrate integrated waveguide components. In: 32nd European Microwave Conference, Milan, Italy, pp. 1–4 (2002) Deslandes, D., Wu, K.: Design consideration and performance analysis of substrate integrated waveguide components. In: 32nd European Microwave Conference, Milan, Italy, pp. 1–4 (2002)
12.
go back to reference Pasian, M., Bozzi, M., Perregrini, L.: a formula for radiation loss in substrate integrated waveguide. IEEE Trans. Microw. Theory Tech. 62, 2205–2213 (2014)CrossRef Pasian, M., Bozzi, M., Perregrini, L.: a formula for radiation loss in substrate integrated waveguide. IEEE Trans. Microw. Theory Tech. 62, 2205–2213 (2014)CrossRef
13.
go back to reference Bozzi, M., Perregrini, P., Wu, K.: Modeling of conductor, dielectric, and radiation losses in substrate integrated waveguide by the boundary integral-resonant mode expansion method. IEEE Trans. Microw. Theory Tech. 56, 3153–3161 (2008)CrossRef Bozzi, M., Perregrini, P., Wu, K.: Modeling of conductor, dielectric, and radiation losses in substrate integrated waveguide by the boundary integral-resonant mode expansion method. IEEE Trans. Microw. Theory Tech. 56, 3153–3161 (2008)CrossRef
14.
go back to reference Esparza, N., Alcon, P., Herrán, L.F., Heras, F.L.: Substrate integrated waveguides structures using frequency selective surfaces operating in stop-band (SBFSS-SIW). IEEE Microw. Wirel. Compon. Lett. 26, 113–115 (2016)CrossRef Esparza, N., Alcon, P., Herrán, L.F., Heras, F.L.: Substrate integrated waveguides structures using frequency selective surfaces operating in stop-band (SBFSS-SIW). IEEE Microw. Wirel. Compon. Lett. 26, 113–115 (2016)CrossRef
15.
go back to reference Raj, C., Suganthi, S.: Survey on microwave frequency V band: characteristics and challenges. In: International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Chennai, pp. 256–258 (2016) Raj, C., Suganthi, S.: Survey on microwave frequency V band: characteristics and challenges. In: International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Chennai, pp. 256–258 (2016)
16.
go back to reference Boufrioua, A., Benghalia, A.: Effects of the resistive patch and the uniaxial anisotropic substrate on the resonant frequency and the scattering radar cross section of a rectangular microstrip antenna. Aerosp. Sci. Technol. 10, 217–221 (2006)CrossRef Boufrioua, A., Benghalia, A.: Effects of the resistive patch and the uniaxial anisotropic substrate on the resonant frequency and the scattering radar cross section of a rectangular microstrip antenna. Aerosp. Sci. Technol. 10, 217–221 (2006)CrossRef
17.
go back to reference Heckler, M.V.T., Dreher, A.: Performance of microstrip antenna arrays installed on aircraft. Aerosp. Sci. Technol. 26, 235–243 (2013)CrossRef Heckler, M.V.T., Dreher, A.: Performance of microstrip antenna arrays installed on aircraft. Aerosp. Sci. Technol. 26, 235–243 (2013)CrossRef
18.
go back to reference Tang, X.J., Xiao, S.Q., Wang, B.Z., Wang, J.: A 60-GHz wideband slot antenna based on substrate integrated waveguide cavity. Int. J. Infrared Millim. Waves 28, 275–281 (2007)CrossRef Tang, X.J., Xiao, S.Q., Wang, B.Z., Wang, J.: A 60-GHz wideband slot antenna based on substrate integrated waveguide cavity. Int. J. Infrared Millim. Waves 28, 275–281 (2007)CrossRef
19.
go back to reference Ravi, P., Lee, J.R.: Progress in frequency selective surface-based smart electromagnetic structures: a critical review. Aerosp. Sci. Technol. 66, 216–234 (2017)CrossRef Ravi, P., Lee, J.R.: Progress in frequency selective surface-based smart electromagnetic structures: a critical review. Aerosp. Sci. Technol. 66, 216–234 (2017)CrossRef
20.
go back to reference Anderson, I.: On the theory of self-resonant grids. Bell Syst. Tech. J. 54, 1725–1731 (1975)CrossRef Anderson, I.: On the theory of self-resonant grids. Bell Syst. Tech. J. 54, 1725–1731 (1975)CrossRef
21.
go back to reference Langley, R.J., Parker, E.A.: Equivalent circuit model for arrays of square loops. Electron. Lett. 18, 294–296 (1982)CrossRef Langley, R.J., Parker, E.A.: Equivalent circuit model for arrays of square loops. Electron. Lett. 18, 294–296 (1982)CrossRef
22.
go back to reference Pozar, D.: Microwave Engineering, 3rd edn. Wiley, Hoboken (2005) Pozar, D.: Microwave Engineering, 3rd edn. Wiley, Hoboken (2005)
23.
go back to reference High frequency Structure Simulator (HFSS) v 15.0.0, Agilent Technologies, Palo Alto, CA High frequency Structure Simulator (HFSS) v 15.0.0, Agilent Technologies, Palo Alto, CA
24.
25.
go back to reference CST Studio Suite, CST, Darmstadt, Germany (2016) CST Studio Suite, CST, Darmstadt, Germany (2016)
Metadata
Title
EM design and analysis of a substrate integrated waveguide based on a frequency-selective surface for millimeter wave radar application
Authors
V. Krushna Kanth
S. Raghavan
Publication date
31-10-2018
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 1/2019
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-018-1272-z

Other articles of this Issue 1/2019

Journal of Computational Electronics 1/2019 Go to the issue