Skip to main content
Top
Published in:
Cover of the book

2016 | OriginalPaper | Chapter

1. Emergence of Nanowires

Authors : Anqi Zhang, Gengfeng Zheng, Charles M. Lieber

Published in: Nanowires

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The design, development and understanding of synthetic materials, with at least one dimension below 100 nm, have been driving a broad range of research in the scientific community for a number of years given the potential of such materials to substantially impact many areas of science and technology. In particular, one-dimensional nanowires, with diameters reaching to the molecular or quantum regime, have been a focus of research over the past two decades. The underlying principles for synthesis of one-dimensional materials have been investigated in different contexts for almost half a century ago, although significant challenges existed in developing the critical understanding to control (i) diameters to the deep nanoscale dimensions as well as (ii) structure and composition in the axial and radial coordinates as necessary for the synthesis of materials with designed and tunable functionality. In this chapter, the emergence of the nanowire research platform is introduced, including the concept and importance, synthetic challenges and initial design, and the development of vapor-liquid-solid crystal growth mechanism. In addition, other nanofabrication based approaches explored in the early years of this field will be briefly introduced.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M.H. Devoret, D. Esteve, C. Urbina, Single-electron transfer in metallic nanostructures. Nature 360(6404), 547–553 (1992)ADSCrossRef M.H. Devoret, D. Esteve, C. Urbina, Single-electron transfer in metallic nanostructures. Nature 360(6404), 547–553 (1992)ADSCrossRef
2.
go back to reference A.P. Alivisatos, Semiconductor clusters, nanocrystals, and quantum dots. Science 271(5251), 933–937 (1996)ADSCrossRef A.P. Alivisatos, Semiconductor clusters, nanocrystals, and quantum dots. Science 271(5251), 933–937 (1996)ADSCrossRef
3.
go back to reference C.M. Lieber, X.L. Wu, Scanning tunneling microscopy studies of low-dimensional materials: probing the effects of chemical substitution at the atomic level. Acc. Chem. Res. 24(6), 170–177 (1991)CrossRef C.M. Lieber, X.L. Wu, Scanning tunneling microscopy studies of low-dimensional materials: probing the effects of chemical substitution at the atomic level. Acc. Chem. Res. 24(6), 170–177 (1991)CrossRef
4.
go back to reference H. Dai, C. Lieber, Scanning tunneling microscopy studies of low-dimensional materials: charge density wave pinning and mclting in two dimensions. Annu. Rev. Phys. Chem. 44(1), 237–263 (1993)ADSCrossRef H. Dai, C. Lieber, Scanning tunneling microscopy studies of low-dimensional materials: charge density wave pinning and mclting in two dimensions. Annu. Rev. Phys. Chem. 44(1), 237–263 (1993)ADSCrossRef
5.
go back to reference C.M. Lieber, J. Liu, P.E. Sheehan, Understanding and manipulating inorganic materials with scanning probe microscopes. Angew. Chem. Int. Ed. 35(7), 686–704 (1996)CrossRef C.M. Lieber, J. Liu, P.E. Sheehan, Understanding and manipulating inorganic materials with scanning probe microscopes. Angew. Chem. Int. Ed. 35(7), 686–704 (1996)CrossRef
6.
go back to reference V. Emery, J. Devreese, R. Evrard, V. Van Doren, Highly conducting one-dimensional solids (Plenum, New York, 1979) V. Emery, J. Devreese, R. Evrard, V. Van Doren, Highly conducting one-dimensional solids (Plenum, New York, 1979)
7.
go back to reference C. Schlenker, J. Dumas, J. Rouxel, Crystal chemistry and properties of materials with quasi-one-dimensional structures (Reidel, Boston, 1986) C. Schlenker, J. Dumas, J. Rouxel, Crystal chemistry and properties of materials with quasi-one-dimensional structures (Reidel, Boston, 1986)
8.
go back to reference H. Dai, C.M. Lieber, Scanning tunneling microscopy studies of low-dimensional materials: charge density wave pinning and melting in two dimensions. Annu. Rev. Phys. Chem. 44(1), 237–263 (1993)ADSCrossRef H. Dai, C.M. Lieber, Scanning tunneling microscopy studies of low-dimensional materials: charge density wave pinning and melting in two dimensions. Annu. Rev. Phys. Chem. 44(1), 237–263 (1993)ADSCrossRef
9.
go back to reference J.A. Wilson, F. Di Salvo, S. Mahajan, Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides. Adv. Phys. 24(2), 117–201 (1975)ADSCrossRef J.A. Wilson, F. Di Salvo, S. Mahajan, Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides. Adv. Phys. 24(2), 117–201 (1975)ADSCrossRef
10.
go back to reference C.M. Lieber, One-dimensional nanostructures: chemistry, physics & applications. Solid State Commun. 107(11), 607–616 (1998)ADSCrossRef C.M. Lieber, One-dimensional nanostructures: chemistry, physics & applications. Solid State Commun. 107(11), 607–616 (1998)ADSCrossRef
11.
go back to reference J. Hu, T.W. Odom, C.M. Lieber, Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 32(5), 435–445 (1999)CrossRef J. Hu, T.W. Odom, C.M. Lieber, Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 32(5), 435–445 (1999)CrossRef
12.
go back to reference C. Murray, C. Kagan, M. Bawendi, Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices. Science 270(5240), 1335–1338 (1995)ADSCrossRef C. Murray, C. Kagan, M. Bawendi, Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices. Science 270(5240), 1335–1338 (1995)ADSCrossRef
13.
go back to reference C. Kane, L. Balents, M.P. Fisher, Coulomb interactions and mesoscopic effects in carbon nanotubes. Phys. Rev. Lett. 79(25), 5086–5089 (1997)ADSCrossRef C. Kane, L. Balents, M.P. Fisher, Coulomb interactions and mesoscopic effects in carbon nanotubes. Phys. Rev. Lett. 79(25), 5086–5089 (1997)ADSCrossRef
14.
go back to reference C.M. Lieber, Z.L. Wang, Functional nanowires. MRS Bull. 32(02), 99–108 (2007)CrossRef C.M. Lieber, Z.L. Wang, Functional nanowires. MRS Bull. 32(02), 99–108 (2007)CrossRef
15.
go back to reference Y. Huang, C.M. Lieber, Integrated nanoscale electronics and optoelectronics: exploring nanoscale science and technology through semiconductor nanowires. Pure Appl. Chem. 76(12), 2051–2068 (2004)CrossRef Y. Huang, C.M. Lieber, Integrated nanoscale electronics and optoelectronics: exploring nanoscale science and technology through semiconductor nanowires. Pure Appl. Chem. 76(12), 2051–2068 (2004)CrossRef
16.
go back to reference C.M. Lieber, Semiconductor nanowires: a platform for nanoscience and nanotechnology. MRS Bull. 36(12), 1052–1063 (2011)CrossRef C.M. Lieber, Semiconductor nanowires: a platform for nanoscience and nanotechnology. MRS Bull. 36(12), 1052–1063 (2011)CrossRef
17.
go back to reference A. Zhang, C.M. Lieber, Nano-bioelectronics. Chem. Rev. 116(1), 215–257 (2016)CrossRef A. Zhang, C.M. Lieber, Nano-bioelectronics. Chem. Rev. 116(1), 215–257 (2016)CrossRef
18.
go back to reference A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler, Crystalline ropes of metallic carbon nanotubes. Science 273(5274), 483–487 (1996)ADSCrossRef A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler, Crystalline ropes of metallic carbon nanotubes. Science 273(5274), 483–487 (1996)ADSCrossRef
19.
go back to reference X. Duan, C.M. Lieber, General synthesis of compound semiconductor nanowires. Adv. Mater. 12(4), 298–302 (2000)CrossRef X. Duan, C.M. Lieber, General synthesis of compound semiconductor nanowires. Adv. Mater. 12(4), 298–302 (2000)CrossRef
20.
go back to reference C.B. Murray, D.J. Norris, M.G. Bawendi, Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115(19), 8706–8715 (1993)CrossRef C.B. Murray, D.J. Norris, M.G. Bawendi, Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115(19), 8706–8715 (1993)CrossRef
21.
go back to reference F. Himpsel, T. Jung, A. Kirakosian, J.-L. Lin, D. Petrovykh, H. Rauscher, J. Viernow, Nanowires by step decoration. MRS Bull. 24(8), 20–24 (1999)CrossRef F. Himpsel, T. Jung, A. Kirakosian, J.-L. Lin, D. Petrovykh, H. Rauscher, J. Viernow, Nanowires by step decoration. MRS Bull. 24(8), 20–24 (1999)CrossRef
22.
go back to reference H. Dai, E.W. Wong, Y.Z. Lu, S. Fan, C.M. Lieber, Synthesis and characterization of carbide nanorods. Nature 375(6534), 769–772 (1995)ADSCrossRef H. Dai, E.W. Wong, Y.Z. Lu, S. Fan, C.M. Lieber, Synthesis and characterization of carbide nanorods. Nature 375(6534), 769–772 (1995)ADSCrossRef
23.
go back to reference W. Han, S. Fan, Q. Li, Y. Hu, Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction. Science 277(5330), 1287–1289 (1997)CrossRef W. Han, S. Fan, Q. Li, Y. Hu, Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction. Science 277(5330), 1287–1289 (1997)CrossRef
24.
go back to reference C.R. Martin, Nanomaterials: a membrane-based synthetic approach. Science 266(5193), 1961–1966 (1994)ADSCrossRef C.R. Martin, Nanomaterials: a membrane-based synthetic approach. Science 266(5193), 1961–1966 (1994)ADSCrossRef
25.
go back to reference R.S. Wagner, W.C. Ellis, Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4(5), 89–90 (1964)ADSCrossRef R.S. Wagner, W.C. Ellis, Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4(5), 89–90 (1964)ADSCrossRef
26.
go back to reference R. Wagner, W. Ellis, The vapor-liquid-solid mechanism of crystal growth and its application to silicon. Trans. Met. Soc. AIME 233, 1053–1064 (1965) R. Wagner, W. Ellis, The vapor-liquid-solid mechanism of crystal growth and its application to silicon. Trans. Met. Soc. AIME 233, 1053–1064 (1965)
27.
go back to reference T.J. Trentler, K.M. Hickman, S.C. Goel, A.M. Viano, P.C. Gibbons, W.E. Buhro, Solution-liquid-solid growth of crystalline III-V semiconductors: an analogy to vapor-liquid-solid growth. Science 270(5243), 1791–1794 (1995)ADSCrossRef T.J. Trentler, K.M. Hickman, S.C. Goel, A.M. Viano, P.C. Gibbons, W.E. Buhro, Solution-liquid-solid growth of crystalline III-V semiconductors: an analogy to vapor-liquid-solid growth. Science 270(5243), 1791–1794 (1995)ADSCrossRef
28.
go back to reference P. Yang, C.M. Lieber, Nanorod-superconductor composites: a pathway to materials with high critical current densities. Science 273(5283), 1836–1840 (1996)ADSCrossRef P. Yang, C.M. Lieber, Nanorod-superconductor composites: a pathway to materials with high critical current densities. Science 273(5283), 1836–1840 (1996)ADSCrossRef
29.
go back to reference Z.W. Pan, Z.R. Dai, Z.L. Wang, Nanobelts of semiconducting oxides. Science 291(5510), 1947–1949 (2001)ADSCrossRef Z.W. Pan, Z.R. Dai, Z.L. Wang, Nanobelts of semiconducting oxides. Science 291(5510), 1947–1949 (2001)ADSCrossRef
30.
go back to reference B.K. Teo, X. Sun, Silicon-based low-dimensional nanomaterials and nanodevices. Chem. Rev. 107(5), 1454–1532 (2007)CrossRef B.K. Teo, X. Sun, Silicon-based low-dimensional nanomaterials and nanodevices. Chem. Rev. 107(5), 1454–1532 (2007)CrossRef
31.
go back to reference W. Lu, C.M. Lieber, Semiconductor nanowires. J. Phys. D Appl. Phys. 39(21), R387–R406 (2006)ADSCrossRef W. Lu, C.M. Lieber, Semiconductor nanowires. J. Phys. D Appl. Phys. 39(21), R387–R406 (2006)ADSCrossRef
32.
go back to reference R.G. Hobbs, N. Petkov, J.D. Holmes, Semiconductor nanowire fabrication by bottom-up and top-down paradigms. Chem. Mat. 24(11), 1975–1991 (2012)CrossRef R.G. Hobbs, N. Petkov, J.D. Holmes, Semiconductor nanowire fabrication by bottom-up and top-down paradigms. Chem. Mat. 24(11), 1975–1991 (2012)CrossRef
33.
go back to reference M. van den Brink, Continuing to shrink: Next-generation lithography-Progress and prospects, in IEEE International Solid-State Circuits Conference, (IEEE, 2013), pp. 20–25 M. van den Brink, Continuing to shrink: Next-generation lithography-Progress and prospects, in IEEE International Solid-State Circuits Conference, (IEEE, 2013), pp. 20–25
34.
go back to reference A.M. Morales, C.M. Lieber, A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279(5348), 208–211 (1998)ADSCrossRef A.M. Morales, C.M. Lieber, A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279(5348), 208–211 (1998)ADSCrossRef
35.
go back to reference Y. Cui, L.J. Lauhon, M.S. Gudiksen, J. Wang, C.M. Lieber, Diameter-controlled synthesis of single-crystal silicon nanowires. Appl. Phys. Lett. 78(15), 2214–2216 (2001)ADSCrossRef Y. Cui, L.J. Lauhon, M.S. Gudiksen, J. Wang, C.M. Lieber, Diameter-controlled synthesis of single-crystal silicon nanowires. Appl. Phys. Lett. 78(15), 2214–2216 (2001)ADSCrossRef
36.
go back to reference X. Duan, C.M. Lieber, Semiconductor nanowires: rational synthesis, in Dekker Encyclopedia of Nanoscience and Nanotechnology, ed. by J.A. Schwarz (Marcel Dekker, Inc., New York, 2005) X. Duan, C.M. Lieber, Semiconductor nanowires: rational synthesis, in Dekker Encyclopedia of Nanoscience and Nanotechnology, ed. by J.A. Schwarz (Marcel Dekker, Inc., New York, 2005)
37.
go back to reference R. Treuting, S. Arnold, Orientation habits of metal whiskers. Acta Met. 5(10), 598 (1957)CrossRef R. Treuting, S. Arnold, Orientation habits of metal whiskers. Acta Met. 5(10), 598 (1957)CrossRef
38.
go back to reference E.S. Greiner, J.A. Gutowski, W.C. Ellis, Preparation of silicon ribbons. J. Appl. Phys. 32(11), 2489–2490 (1961)ADSCrossRef E.S. Greiner, J.A. Gutowski, W.C. Ellis, Preparation of silicon ribbons. J. Appl. Phys. 32(11), 2489–2490 (1961)ADSCrossRef
39.
go back to reference R.S. Wagner, Growth of whiskers by vapor-phase reactions, in Whisker technology, ed. by A.P. Levitt (Wiley, New York, 1970), pp. 15–119 R.S. Wagner, Growth of whiskers by vapor-phase reactions, in Whisker technology, ed. by A.P. Levitt (Wiley, New York, 1970), pp. 15–119
40.
41.
go back to reference T.G. Dietz, M.A. Duncan, D.E. Powers, R.E. Smalley, Laser production of supersonic metal cluster beams. J. Chem. Phys. 74(11), 6511–6512 (1981)ADSCrossRef T.G. Dietz, M.A. Duncan, D.E. Powers, R.E. Smalley, Laser production of supersonic metal cluster beams. J. Chem. Phys. 74(11), 6511–6512 (1981)ADSCrossRef
42.
go back to reference P.B. Fischer, K. Dai, E. Chen, S.Y. Chou, 10 nm Si pillars fabricated using electron-beam lithography, reactive ion etching, and HF etching. J. Vac. Sci. Technol., B 11(6), 2524–2527 (1993)CrossRef P.B. Fischer, K. Dai, E. Chen, S.Y. Chou, 10 nm Si pillars fabricated using electron-beam lithography, reactive ion etching, and HF etching. J. Vac. Sci. Technol., B 11(6), 2524–2527 (1993)CrossRef
43.
go back to reference P.B. Fischer, S.Y. Chou, Sub-50 nm high aspect-ratio silicon pillars, ridges, and trenches fabricated using ultrahigh resolution electron beam lithography and reactive ion etching. Appl. Phys. Lett. 62(12), 1414–1416 (1993)ADSCrossRef P.B. Fischer, S.Y. Chou, Sub-50 nm high aspect-ratio silicon pillars, ridges, and trenches fabricated using ultrahigh resolution electron beam lithography and reactive ion etching. Appl. Phys. Lett. 62(12), 1414–1416 (1993)ADSCrossRef
44.
go back to reference W. Chen, H. Ahmed, Fabrication of high aspect ratio silicon pillars of <10 nm diameter. Appl. Phys. Lett. 63(8), 1116–1118 (1993)ADSCrossRef W. Chen, H. Ahmed, Fabrication of high aspect ratio silicon pillars of <10 nm diameter. Appl. Phys. Lett. 63(8), 1116–1118 (1993)ADSCrossRef
45.
go back to reference P.A. Lewis, H. Ahmed, T. Sato, Silicon nanopillars formed with gold colloidal particle masking. J. Vac. Sci. Technol., B 16(6), 2938–2941 (1998)CrossRef P.A. Lewis, H. Ahmed, T. Sato, Silicon nanopillars formed with gold colloidal particle masking. J. Vac. Sci. Technol., B 16(6), 2938–2941 (1998)CrossRef
46.
go back to reference E.W. Wong, B.W. Maynor, L.D. Burns, C.M. Lieber, Growth of metal carbide nanotubes and nanorods. Chem. Mat. 8(8), 2041–2046 (1996)CrossRef E.W. Wong, B.W. Maynor, L.D. Burns, C.M. Lieber, Growth of metal carbide nanotubes and nanorods. Chem. Mat. 8(8), 2041–2046 (1996)CrossRef
47.
go back to reference M. Yazawa, M. Koguchi, A. Muto, M. Ozawa, K. Hiruma, Effect of one monolayer of surface gold atoms on the epitaxial growth of InAs nanowhiskers. Appl. Phys. Lett. 61(17), 2051–2053 (1992)ADSCrossRef M. Yazawa, M. Koguchi, A. Muto, M. Ozawa, K. Hiruma, Effect of one monolayer of surface gold atoms on the epitaxial growth of InAs nanowhiskers. Appl. Phys. Lett. 61(17), 2051–2053 (1992)ADSCrossRef
48.
go back to reference K. Hiruma, M. Yazawa, K. Haraguchi, K. Ogawa, T. Katsuyama, M. Koguchi, H. Kakibayashi, GaAs free-standing quantum-size wires. J. Appl. Phys. 74(5), 3162–3171 (1993)ADSCrossRef K. Hiruma, M. Yazawa, K. Haraguchi, K. Ogawa, T. Katsuyama, M. Koguchi, H. Kakibayashi, GaAs free-standing quantum-size wires. J. Appl. Phys. 74(5), 3162–3171 (1993)ADSCrossRef
49.
go back to reference T. Sato, K. Hiruma, M. Shirai, K. Tominaga, K. Haraguchi, T. Katsuyama, T. Shimada, Site-controlled growth of nanowhiskers. Appl. Phys. Lett. 66(2), 159–161 (1995)ADSCrossRef T. Sato, K. Hiruma, M. Shirai, K. Tominaga, K. Haraguchi, T. Katsuyama, T. Shimada, Site-controlled growth of nanowhiskers. Appl. Phys. Lett. 66(2), 159–161 (1995)ADSCrossRef
50.
go back to reference J.F. Ready, Effects of high-power laser radiation (Academic Press, New York, 1971) J.F. Ready, Effects of high-power laser radiation (Academic Press, New York, 1971)
51.
go back to reference C. Lieber, A. Morales, P. Sheehan, E. Wong, P. Yang, One-dimensional nanostructures: Rational synthesis, novel properties and applications, in Proceedings of the Robert A. Welch Foundation 40th Conference on Chemical Research: Chemistry on the Nanometer Scale (1997), pp. 165–187 C. Lieber, A. Morales, P. Sheehan, E. Wong, P. Yang, One-dimensional nanostructures: Rational synthesis, novel properties and applications, in Proceedings of the Robert A. Welch Foundation 40th Conference on Chemical Research: Chemistry on the Nanometer Scale (1997), pp. 165–187
52.
go back to reference Y.F. Zhang, Y.H. Tang, N. Wang, D.P. Yu, C.S. Lee, I. Bello, S.T. Lee, Silicon nanowires prepared by laser ablation at high temperature. Appl. Phys. Lett. 72(15), 1835–1837 (1998)ADSCrossRef Y.F. Zhang, Y.H. Tang, N. Wang, D.P. Yu, C.S. Lee, I. Bello, S.T. Lee, Silicon nanowires prepared by laser ablation at high temperature. Appl. Phys. Lett. 72(15), 1835–1837 (1998)ADSCrossRef
53.
go back to reference Y. Wang, T. Wang, P. Da, M. Xu, H. Wu, G. Zheng, Silicon nanowires for biosensing, energy storage, and conversion. Adv. Mater. 25(37), 5177–5195 (2013)CrossRef Y. Wang, T. Wang, P. Da, M. Xu, H. Wu, G. Zheng, Silicon nanowires for biosensing, energy storage, and conversion. Adv. Mater. 25(37), 5177–5195 (2013)CrossRef
Metadata
Title
Emergence of Nanowires
Authors
Anqi Zhang
Gengfeng Zheng
Charles M. Lieber
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-41981-7_1

Premium Partners