2016 | OriginalPaper | Chapter
Hint
Swipe to navigate through the chapters of this book
Published in:
Nanowires
The design, development and understanding of synthetic materials, with at least one dimension below 100 nm, have been driving a broad range of research in the scientific community for a number of years given the potential of such materials to substantially impact many areas of science and technology. In particular, one-dimensional nanowires, with diameters reaching to the molecular or quantum regime, have been a focus of research over the past two decades. The underlying principles for synthesis of one-dimensional materials have been investigated in different contexts for almost half a century ago, although significant challenges existed in developing the critical understanding to control (i) diameters to the deep nanoscale dimensions as well as (ii) structure and composition in the axial and radial coordinates as necessary for the synthesis of materials with designed and tunable functionality. In this chapter, the emergence of the nanowire research platform is introduced, including the concept and importance, synthetic challenges and initial design, and the development of vapor-liquid-solid crystal growth mechanism. In addition, other nanofabrication based approaches explored in the early years of this field will be briefly introduced.
Please log in to get access to this content
To get access to this content you need the following product:
Advertisement
1.
go back to reference M.H. Devoret, D. Esteve, C. Urbina, Single-electron transfer in metallic nanostructures. Nature 360(6404), 547–553 (1992) ADSCrossRef M.H. Devoret, D. Esteve, C. Urbina, Single-electron transfer in metallic nanostructures. Nature
360(6404), 547–553 (1992)
ADSCrossRef
2.
go back to reference A.P. Alivisatos, Semiconductor clusters, nanocrystals, and quantum dots. Science 271(5251), 933–937 (1996) ADSCrossRef A.P. Alivisatos, Semiconductor clusters, nanocrystals, and quantum dots. Science
271(5251), 933–937 (1996)
ADSCrossRef
3.
go back to reference C.M. Lieber, X.L. Wu, Scanning tunneling microscopy studies of low-dimensional materials: probing the effects of chemical substitution at the atomic level. Acc. Chem. Res. 24(6), 170–177 (1991) CrossRef C.M. Lieber, X.L. Wu, Scanning tunneling microscopy studies of low-dimensional materials: probing the effects of chemical substitution at the atomic level. Acc. Chem. Res.
24(6), 170–177 (1991)
CrossRef
4.
go back to reference H. Dai, C. Lieber, Scanning tunneling microscopy studies of low-dimensional materials: charge density wave pinning and mclting in two dimensions. Annu. Rev. Phys. Chem. 44(1), 237–263 (1993) ADSCrossRef H. Dai, C. Lieber, Scanning tunneling microscopy studies of low-dimensional materials: charge density wave pinning and mclting in two dimensions. Annu. Rev. Phys. Chem.
44(1), 237–263 (1993)
ADSCrossRef
5.
go back to reference C.M. Lieber, J. Liu, P.E. Sheehan, Understanding and manipulating inorganic materials with scanning probe microscopes. Angew. Chem. Int. Ed. 35(7), 686–704 (1996) CrossRef C.M. Lieber, J. Liu, P.E. Sheehan, Understanding and manipulating inorganic materials with scanning probe microscopes. Angew. Chem. Int. Ed.
35(7), 686–704 (1996)
CrossRef
6.
go back to reference V. Emery, J. Devreese, R. Evrard, V. Van Doren, Highly conducting one-dimensional solids (Plenum, New York, 1979) V. Emery, J. Devreese, R. Evrard, V. Van Doren,
Highly conducting one-dimensional solids (Plenum, New York, 1979)
7.
go back to reference C. Schlenker, J. Dumas, J. Rouxel, Crystal chemistry and properties of materials with quasi-one-dimensional structures (Reidel, Boston, 1986) C. Schlenker, J. Dumas, J. Rouxel,
Crystal chemistry and properties of materials with quasi-one-dimensional structures (Reidel, Boston, 1986)
8.
go back to reference H. Dai, C.M. Lieber, Scanning tunneling microscopy studies of low-dimensional materials: charge density wave pinning and melting in two dimensions. Annu. Rev. Phys. Chem. 44(1), 237–263 (1993) ADSCrossRef H. Dai, C.M. Lieber, Scanning tunneling microscopy studies of low-dimensional materials: charge density wave pinning and melting in two dimensions. Annu. Rev. Phys. Chem.
44(1), 237–263 (1993)
ADSCrossRef
9.
go back to reference J.A. Wilson, F. Di Salvo, S. Mahajan, Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides. Adv. Phys. 24(2), 117–201 (1975) ADSCrossRef J.A. Wilson, F. Di Salvo, S. Mahajan, Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides. Adv. Phys.
24(2), 117–201 (1975)
ADSCrossRef
10.
go back to reference C.M. Lieber, One-dimensional nanostructures: chemistry, physics & applications. Solid State Commun. 107(11), 607–616 (1998) ADSCrossRef C.M. Lieber, One-dimensional nanostructures: chemistry, physics & applications. Solid State Commun.
107(11), 607–616 (1998)
ADSCrossRef
11.
go back to reference J. Hu, T.W. Odom, C.M. Lieber, Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 32(5), 435–445 (1999) CrossRef J. Hu, T.W. Odom, C.M. Lieber, Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Acc. Chem. Res.
32(5), 435–445 (1999)
CrossRef
12.
go back to reference C. Murray, C. Kagan, M. Bawendi, Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices. Science 270(5240), 1335–1338 (1995) ADSCrossRef C. Murray, C. Kagan, M. Bawendi, Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices. Science
270(5240), 1335–1338 (1995)
ADSCrossRef
13.
go back to reference C. Kane, L. Balents, M.P. Fisher, Coulomb interactions and mesoscopic effects in carbon nanotubes. Phys. Rev. Lett. 79(25), 5086–5089 (1997) ADSCrossRef C. Kane, L. Balents, M.P. Fisher, Coulomb interactions and mesoscopic effects in carbon nanotubes. Phys. Rev. Lett.
79(25), 5086–5089 (1997)
ADSCrossRef
14.
go back to reference C.M. Lieber, Z.L. Wang, Functional nanowires. MRS Bull. 32(02), 99–108 (2007) CrossRef C.M. Lieber, Z.L. Wang, Functional nanowires. MRS Bull.
32(02), 99–108 (2007)
CrossRef
15.
go back to reference Y. Huang, C.M. Lieber, Integrated nanoscale electronics and optoelectronics: exploring nanoscale science and technology through semiconductor nanowires. Pure Appl. Chem. 76(12), 2051–2068 (2004) CrossRef Y. Huang, C.M. Lieber, Integrated nanoscale electronics and optoelectronics: exploring nanoscale science and technology through semiconductor nanowires. Pure Appl. Chem.
76(12), 2051–2068 (2004)
CrossRef
16.
go back to reference C.M. Lieber, Semiconductor nanowires: a platform for nanoscience and nanotechnology. MRS Bull. 36(12), 1052–1063 (2011) CrossRef C.M. Lieber, Semiconductor nanowires: a platform for nanoscience and nanotechnology. MRS Bull.
36(12), 1052–1063 (2011)
CrossRef
17.
go back to reference A. Zhang, C.M. Lieber, Nano-bioelectronics. Chem. Rev. 116(1), 215–257 (2016) CrossRef A. Zhang, C.M. Lieber, Nano-bioelectronics. Chem. Rev.
116(1), 215–257 (2016)
CrossRef
18.
go back to reference A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler, Crystalline ropes of metallic carbon nanotubes. Science 273(5274), 483–487 (1996) ADSCrossRef A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler, Crystalline ropes of metallic carbon nanotubes. Science
273(5274), 483–487 (1996)
ADSCrossRef
19.
go back to reference X. Duan, C.M. Lieber, General synthesis of compound semiconductor nanowires. Adv. Mater. 12(4), 298–302 (2000) CrossRef X. Duan, C.M. Lieber, General synthesis of compound semiconductor nanowires. Adv. Mater.
12(4), 298–302 (2000)
CrossRef
20.
go back to reference C.B. Murray, D.J. Norris, M.G. Bawendi, Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115(19), 8706–8715 (1993) CrossRef C.B. Murray, D.J. Norris, M.G. Bawendi, Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc.
115(19), 8706–8715 (1993)
CrossRef
21.
go back to reference F. Himpsel, T. Jung, A. Kirakosian, J.-L. Lin, D. Petrovykh, H. Rauscher, J. Viernow, Nanowires by step decoration. MRS Bull. 24(8), 20–24 (1999) CrossRef F. Himpsel, T. Jung, A. Kirakosian, J.-L. Lin, D. Petrovykh, H. Rauscher, J. Viernow, Nanowires by step decoration. MRS Bull.
24(8), 20–24 (1999)
CrossRef
22.
go back to reference H. Dai, E.W. Wong, Y.Z. Lu, S. Fan, C.M. Lieber, Synthesis and characterization of carbide nanorods. Nature 375(6534), 769–772 (1995) ADSCrossRef H. Dai, E.W. Wong, Y.Z. Lu, S. Fan, C.M. Lieber, Synthesis and characterization of carbide nanorods. Nature
375(6534), 769–772 (1995)
ADSCrossRef
23.
go back to reference W. Han, S. Fan, Q. Li, Y. Hu, Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction. Science 277(5330), 1287–1289 (1997) CrossRef W. Han, S. Fan, Q. Li, Y. Hu, Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction. Science
277(5330), 1287–1289 (1997)
CrossRef
24.
go back to reference C.R. Martin, Nanomaterials: a membrane-based synthetic approach. Science 266(5193), 1961–1966 (1994) ADSCrossRef C.R. Martin, Nanomaterials: a membrane-based synthetic approach. Science
266(5193), 1961–1966 (1994)
ADSCrossRef
25.
go back to reference R.S. Wagner, W.C. Ellis, Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4(5), 89–90 (1964) ADSCrossRef R.S. Wagner, W.C. Ellis, Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett.
4(5), 89–90 (1964)
ADSCrossRef
26.
go back to reference R. Wagner, W. Ellis, The vapor-liquid-solid mechanism of crystal growth and its application to silicon. Trans. Met. Soc. AIME 233, 1053–1064 (1965) R. Wagner, W. Ellis, The vapor-liquid-solid mechanism of crystal growth and its application to silicon. Trans. Met. Soc. AIME
233, 1053–1064 (1965)
27.
go back to reference T.J. Trentler, K.M. Hickman, S.C. Goel, A.M. Viano, P.C. Gibbons, W.E. Buhro, Solution-liquid-solid growth of crystalline III-V semiconductors: an analogy to vapor-liquid-solid growth. Science 270(5243), 1791–1794 (1995) ADSCrossRef T.J. Trentler, K.M. Hickman, S.C. Goel, A.M. Viano, P.C. Gibbons, W.E. Buhro, Solution-liquid-solid growth of crystalline III-V semiconductors: an analogy to vapor-liquid-solid growth. Science
270(5243), 1791–1794 (1995)
ADSCrossRef
28.
go back to reference P. Yang, C.M. Lieber, Nanorod-superconductor composites: a pathway to materials with high critical current densities. Science 273(5283), 1836–1840 (1996) ADSCrossRef P. Yang, C.M. Lieber, Nanorod-superconductor composites: a pathway to materials with high critical current densities. Science
273(5283), 1836–1840 (1996)
ADSCrossRef
29.
go back to reference Z.W. Pan, Z.R. Dai, Z.L. Wang, Nanobelts of semiconducting oxides. Science 291(5510), 1947–1949 (2001) ADSCrossRef Z.W. Pan, Z.R. Dai, Z.L. Wang, Nanobelts of semiconducting oxides. Science
291(5510), 1947–1949 (2001)
ADSCrossRef
30.
go back to reference B.K. Teo, X. Sun, Silicon-based low-dimensional nanomaterials and nanodevices. Chem. Rev. 107(5), 1454–1532 (2007) CrossRef B.K. Teo, X. Sun, Silicon-based low-dimensional nanomaterials and nanodevices. Chem. Rev.
107(5), 1454–1532 (2007)
CrossRef
31.
go back to reference W. Lu, C.M. Lieber, Semiconductor nanowires. J. Phys. D Appl. Phys. 39(21), R387–R406 (2006) ADSCrossRef W. Lu, C.M. Lieber, Semiconductor nanowires. J. Phys. D Appl. Phys.
39(21), R387–R406 (2006)
ADSCrossRef
32.
go back to reference R.G. Hobbs, N. Petkov, J.D. Holmes, Semiconductor nanowire fabrication by bottom-up and top-down paradigms. Chem. Mat. 24(11), 1975–1991 (2012) CrossRef R.G. Hobbs, N. Petkov, J.D. Holmes, Semiconductor nanowire fabrication by bottom-up and top-down paradigms. Chem. Mat.
24(11), 1975–1991 (2012)
CrossRef
33.
go back to reference M. van den Brink, Continuing to shrink: Next-generation lithography-Progress and prospects, in IEEE International Solid-State Circuits Conference, (IEEE, 2013), pp. 20–25 M. van den Brink, Continuing to shrink: Next-generation lithography-Progress and prospects, in
IEEE International Solid-State Circuits Conference, (IEEE, 2013), pp. 20–25
34.
go back to reference A.M. Morales, C.M. Lieber, A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279(5348), 208–211 (1998) ADSCrossRef A.M. Morales, C.M. Lieber, A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science
279(5348), 208–211 (1998)
ADSCrossRef
35.
go back to reference Y. Cui, L.J. Lauhon, M.S. Gudiksen, J. Wang, C.M. Lieber, Diameter-controlled synthesis of single-crystal silicon nanowires. Appl. Phys. Lett. 78(15), 2214–2216 (2001) ADSCrossRef Y. Cui, L.J. Lauhon, M.S. Gudiksen, J. Wang, C.M. Lieber, Diameter-controlled synthesis of single-crystal silicon nanowires. Appl. Phys. Lett.
78(15), 2214–2216 (2001)
ADSCrossRef
36.
go back to reference X. Duan, C.M. Lieber, Semiconductor nanowires: rational synthesis, in Dekker Encyclopedia of Nanoscience and Nanotechnology, ed. by J.A. Schwarz (Marcel Dekker, Inc., New York, 2005) X. Duan, C.M. Lieber, Semiconductor nanowires: rational synthesis, in
Dekker Encyclopedia of Nanoscience and Nanotechnology, ed. by J.A. Schwarz (Marcel Dekker, Inc., New York, 2005)
37.
go back to reference R. Treuting, S. Arnold, Orientation habits of metal whiskers. Acta Met. 5(10), 598 (1957) CrossRef R. Treuting, S. Arnold, Orientation habits of metal whiskers. Acta Met.
5(10), 598 (1957)
CrossRef
38.
go back to reference E.S. Greiner, J.A. Gutowski, W.C. Ellis, Preparation of silicon ribbons. J. Appl. Phys. 32(11), 2489–2490 (1961) ADSCrossRef E.S. Greiner, J.A. Gutowski, W.C. Ellis, Preparation of silicon ribbons. J. Appl. Phys.
32(11), 2489–2490 (1961)
ADSCrossRef
39.
go back to reference R.S. Wagner, Growth of whiskers by vapor-phase reactions, in Whisker technology, ed. by A.P. Levitt (Wiley, New York, 1970), pp. 15–119 R.S. Wagner, Growth of whiskers by vapor-phase reactions, in
Whisker technology, ed. by A.P. Levitt (Wiley, New York, 1970), pp. 15–119
40.
go back to reference E. Givargizov, Fundamental aspects of VLS growth. J. Cryst. Growth 31, 20–30 (1975) ADSCrossRef E. Givargizov, Fundamental aspects of VLS growth. J. Cryst. Growth
31, 20–30 (1975)
ADSCrossRef
41.
go back to reference T.G. Dietz, M.A. Duncan, D.E. Powers, R.E. Smalley, Laser production of supersonic metal cluster beams. J. Chem. Phys. 74(11), 6511–6512 (1981) ADSCrossRef T.G. Dietz, M.A. Duncan, D.E. Powers, R.E. Smalley, Laser production of supersonic metal cluster beams. J. Chem. Phys.
74(11), 6511–6512 (1981)
ADSCrossRef
42.
go back to reference P.B. Fischer, K. Dai, E. Chen, S.Y. Chou, 10 nm Si pillars fabricated using electron-beam lithography, reactive ion etching, and HF etching. J. Vac. Sci. Technol., B 11(6), 2524–2527 (1993) CrossRef P.B. Fischer, K. Dai, E. Chen, S.Y. Chou, 10 nm Si pillars fabricated using electron-beam lithography, reactive ion etching, and HF etching. J. Vac. Sci. Technol., B
11(6), 2524–2527 (1993)
CrossRef
43.
go back to reference P.B. Fischer, S.Y. Chou, Sub-50 nm high aspect-ratio silicon pillars, ridges, and trenches fabricated using ultrahigh resolution electron beam lithography and reactive ion etching. Appl. Phys. Lett. 62(12), 1414–1416 (1993) ADSCrossRef P.B. Fischer, S.Y. Chou, Sub-50 nm high aspect-ratio silicon pillars, ridges, and trenches fabricated using ultrahigh resolution electron beam lithography and reactive ion etching. Appl. Phys. Lett.
62(12), 1414–1416 (1993)
ADSCrossRef
44.
go back to reference W. Chen, H. Ahmed, Fabrication of high aspect ratio silicon pillars of <10 nm diameter. Appl. Phys. Lett. 63(8), 1116–1118 (1993) ADSCrossRef W. Chen, H. Ahmed, Fabrication of high aspect ratio silicon pillars of <10 nm diameter. Appl. Phys. Lett.
63(8), 1116–1118 (1993)
ADSCrossRef
45.
go back to reference P.A. Lewis, H. Ahmed, T. Sato, Silicon nanopillars formed with gold colloidal particle masking. J. Vac. Sci. Technol., B 16(6), 2938–2941 (1998) CrossRef P.A. Lewis, H. Ahmed, T. Sato, Silicon nanopillars formed with gold colloidal particle masking. J. Vac. Sci. Technol., B
16(6), 2938–2941 (1998)
CrossRef
46.
go back to reference E.W. Wong, B.W. Maynor, L.D. Burns, C.M. Lieber, Growth of metal carbide nanotubes and nanorods. Chem. Mat. 8(8), 2041–2046 (1996) CrossRef E.W. Wong, B.W. Maynor, L.D. Burns, C.M. Lieber, Growth of metal carbide nanotubes and nanorods. Chem. Mat.
8(8), 2041–2046 (1996)
CrossRef
47.
go back to reference M. Yazawa, M. Koguchi, A. Muto, M. Ozawa, K. Hiruma, Effect of one monolayer of surface gold atoms on the epitaxial growth of InAs nanowhiskers. Appl. Phys. Lett. 61(17), 2051–2053 (1992) ADSCrossRef M. Yazawa, M. Koguchi, A. Muto, M. Ozawa, K. Hiruma, Effect of one monolayer of surface gold atoms on the epitaxial growth of InAs nanowhiskers. Appl. Phys. Lett.
61(17), 2051–2053 (1992)
ADSCrossRef
48.
go back to reference K. Hiruma, M. Yazawa, K. Haraguchi, K. Ogawa, T. Katsuyama, M. Koguchi, H. Kakibayashi, GaAs free-standing quantum-size wires. J. Appl. Phys. 74(5), 3162–3171 (1993) ADSCrossRef K. Hiruma, M. Yazawa, K. Haraguchi, K. Ogawa, T. Katsuyama, M. Koguchi, H. Kakibayashi, GaAs free-standing quantum-size wires. J. Appl. Phys.
74(5), 3162–3171 (1993)
ADSCrossRef
49.
go back to reference T. Sato, K. Hiruma, M. Shirai, K. Tominaga, K. Haraguchi, T. Katsuyama, T. Shimada, Site-controlled growth of nanowhiskers. Appl. Phys. Lett. 66(2), 159–161 (1995) ADSCrossRef T. Sato, K. Hiruma, M. Shirai, K. Tominaga, K. Haraguchi, T. Katsuyama, T. Shimada, Site-controlled growth of nanowhiskers. Appl. Phys. Lett.
66(2), 159–161 (1995)
ADSCrossRef
50.
go back to reference J.F. Ready, Effects of high-power laser radiation (Academic Press, New York, 1971) J.F. Ready,
Effects of high-power laser radiation (Academic Press, New York, 1971)
51.
go back to reference C. Lieber, A. Morales, P. Sheehan, E. Wong, P. Yang, One-dimensional nanostructures: Rational synthesis, novel properties and applications, in Proceedings of the Robert A. Welch Foundation 40th Conference on Chemical Research: Chemistry on the Nanometer Scale (1997), pp. 165–187 C. Lieber, A. Morales, P. Sheehan, E. Wong, P. Yang, One-dimensional nanostructures: Rational synthesis, novel properties and applications, in
Proceedings of the Robert A. Welch Foundation 40th Conference on Chemical Research: Chemistry on the Nanometer Scale (1997), pp. 165–187
52.
go back to reference Y.F. Zhang, Y.H. Tang, N. Wang, D.P. Yu, C.S. Lee, I. Bello, S.T. Lee, Silicon nanowires prepared by laser ablation at high temperature. Appl. Phys. Lett. 72(15), 1835–1837 (1998) ADSCrossRef Y.F. Zhang, Y.H. Tang, N. Wang, D.P. Yu, C.S. Lee, I. Bello, S.T. Lee, Silicon nanowires prepared by laser ablation at high temperature. Appl. Phys. Lett.
72(15), 1835–1837 (1998)
ADSCrossRef
53.
go back to reference Y. Wang, T. Wang, P. Da, M. Xu, H. Wu, G. Zheng, Silicon nanowires for biosensing, energy storage, and conversion. Adv. Mater. 25(37), 5177–5195 (2013) CrossRef Y. Wang, T. Wang, P. Da, M. Xu, H. Wu, G. Zheng, Silicon nanowires for biosensing, energy storage, and conversion. Adv. Mater.
25(37), 5177–5195 (2013)
CrossRef
- Title
- Emergence of Nanowires
- DOI
- https://doi.org/10.1007/978-3-319-41981-7_1
- Authors:
-
Anqi Zhang
Gengfeng Zheng
Charles M. Lieber
- Publisher
- Springer International Publishing
- Sequence number
- 1
- Chapter number
- Chapter 1