Skip to main content
Top
Published in: Advances in Manufacturing 1/2015

01-03-2015

Emerging carbon-based nanosensor devices: structures, functions and applications

Authors: S. Manzetti, D. Vasilache, E. Francesco

Published in: Advances in Manufacturing | Issue 1/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Bionanosensors and nanosensors have been devised in recent years with the use of various materials including carbon-based nanomaterials, for applications in diagnostics, environmental science and microelectronics. Carbon-based materials are critical for sensing applications, as they have physical and electronic properties which facilitate the detection of substances in solutions, gaseous compounds and pollutants through their conductive properties and resonance-frequency transmission capacities. In this review, a series of recent studies of carbon nanotubes (CNTs) based nanosensors and optical systems are reported, with emphasis on biochemical, chemical and environmental detection. This study also encompasses a background and description of the various properties of the nanomaterials, and the operation mechanism of the manufactured nanosensors. The use of computational chemistry is applied in describing the electronic properties and molecular events of the included nanomaterials during operation. This review shows that resonance-based sensing technologies reach detection limits for gases, such as ammonia down to 10−24 level. The study also shows that the properties of the carbon nanomaterials give them unique features that are critical for designing new sensors based on electrocatalysis and other reactive detection mechanisms. Several research fields can benefit from the described emerging technologies, such as areas of research in environmental monitoring, rapid-on site diagnostics, in situ analyses, and blood and urine sampling in medical and sport industry. Carbon nanomaterials are critical for the operational sensitivity of nanosensors. Considering the low cost of fabrication, carbon nanomaterials can represent an essential step in the manufacturing of tomorrow’s commercial sensors.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zhang CY, Yeh HC, Kuroki MT et al (2005) Single-quantum-dot-based DNA nanosensor. Nat Mater 4(11):826–831CrossRef Zhang CY, Yeh HC, Kuroki MT et al (2005) Single-quantum-dot-based DNA nanosensor. Nat Mater 4(11):826–831CrossRef
2.
go back to reference Riu J, Maroto A, Rius FX (2006) Nanosensors in environmental analysis. Talanta 69(2):288–301CrossRef Riu J, Maroto A, Rius FX (2006) Nanosensors in environmental analysis. Talanta 69(2):288–301CrossRef
3.
go back to reference Worsfold O, Toma C, Nishiya T (2004) Development of a novel optical bionanosensor. Biosens Bioelectron 19(11):1505–1511CrossRef Worsfold O, Toma C, Nishiya T (2004) Development of a novel optical bionanosensor. Biosens Bioelectron 19(11):1505–1511CrossRef
4.
go back to reference Labroo P, Cui Y (2013) Flexible graphene bio-nanosensor for lactate. Biosens Bioelectron 41:852–856CrossRef Labroo P, Cui Y (2013) Flexible graphene bio-nanosensor for lactate. Biosens Bioelectron 41:852–856CrossRef
5.
go back to reference Yola ML, Atar N, Eren T (2014) Determination of amikacin in human plasma by molecular imprinted SPR nanosensor. Sens Actuators B 198:70–76CrossRef Yola ML, Atar N, Eren T (2014) Determination of amikacin in human plasma by molecular imprinted SPR nanosensor. Sens Actuators B 198:70–76CrossRef
6.
go back to reference Qian ZS, Shan XY, Chai LJ et al (2014) DNA nanosensor based on biocompatible graphene quantum dots and carbon nanotubes. Biosens Bioelectron 60:64–70CrossRef Qian ZS, Shan XY, Chai LJ et al (2014) DNA nanosensor based on biocompatible graphene quantum dots and carbon nanotubes. Biosens Bioelectron 60:64–70CrossRef
7.
go back to reference Li Y, Ma Q, Liu Z et al (2014) A novel enzyme-mimic nanosensor based on quantum dot-Au nanoparticle@ silica mesoporous microsphere for the detection of glucose. Anal Chim Acta 840:68–74CrossRef Li Y, Ma Q, Liu Z et al (2014) A novel enzyme-mimic nanosensor based on quantum dot-Au nanoparticle@ silica mesoporous microsphere for the detection of glucose. Anal Chim Acta 840:68–74CrossRef
8.
go back to reference Chi X, Huang D, Zhao Z et al (2012) Nanoprobes for in vitro diagnostics of cancer and infectious diseases. Biomaterials 33(1):189–206CrossRef Chi X, Huang D, Zhao Z et al (2012) Nanoprobes for in vitro diagnostics of cancer and infectious diseases. Biomaterials 33(1):189–206CrossRef
9.
go back to reference Hirata T, Amiya S, Akiya M et al (2007) Development of a vitamin-protein sensor based on carbon nanotube hybrid materials. Appl Phys Lett 90(23):233106CrossRef Hirata T, Amiya S, Akiya M et al (2007) Development of a vitamin-protein sensor based on carbon nanotube hybrid materials. Appl Phys Lett 90(23):233106CrossRef
10.
go back to reference Hirata T, Amiya S, Akiya M et al (2008) Chemical modification of carbon nanotube based bio-nanosensor by plasma activation. Jpn J Appl Phys 47(4R):2068–2071CrossRef Hirata T, Amiya S, Akiya M et al (2008) Chemical modification of carbon nanotube based bio-nanosensor by plasma activation. Jpn J Appl Phys 47(4R):2068–2071CrossRef
11.
go back to reference Adhikari S, Chowdhury R (2012) Zeptogram sensing from gigahertz vibration: graphene based nanosensor. Phys E 44(7):1528–1534CrossRef Adhikari S, Chowdhury R (2012) Zeptogram sensing from gigahertz vibration: graphene based nanosensor. Phys E 44(7):1528–1534CrossRef
12.
go back to reference Murmu T, Adhikari S (2011) Nonlocal vibration of carbon nanotubes with attached buckyballs at tip. Mech Res Commun 38(1):62–67MATHCrossRef Murmu T, Adhikari S (2011) Nonlocal vibration of carbon nanotubes with attached buckyballs at tip. Mech Res Commun 38(1):62–67MATHCrossRef
13.
go back to reference Suehiro J, Sano N, Zhou G et al (2006) Application of dielectrophoresis to fabrication of carbon nanohorn gas sensor. J Electrost 64(6):408–415CrossRef Suehiro J, Sano N, Zhou G et al (2006) Application of dielectrophoresis to fabrication of carbon nanohorn gas sensor. J Electrost 64(6):408–415CrossRef
14.
go back to reference Sano N, Ohtsuki F (2007) Carbon nanohorn sensor to detect ozone in water. J Electrost 65(4):263–268CrossRef Sano N, Ohtsuki F (2007) Carbon nanohorn sensor to detect ozone in water. J Electrost 65(4):263–268CrossRef
15.
go back to reference Hangarter CM, Bangar M, Mulchandani A et al (2010) Conducting polymer nanowires for chemiresistive and FET-based bio/chemical sensors. J Mater Chem 20(16):3131–3140CrossRef Hangarter CM, Bangar M, Mulchandani A et al (2010) Conducting polymer nanowires for chemiresistive and FET-based bio/chemical sensors. J Mater Chem 20(16):3131–3140CrossRef
16.
go back to reference Hun X, Zhang Z (2007) Preparation of a novel fluorescence nanosensor based on calcein-doped silica nanoparticles, and its application to the determination of calcium in blood serum. Microchim Acta 159(3–4):255–261CrossRef Hun X, Zhang Z (2007) Preparation of a novel fluorescence nanosensor based on calcein-doped silica nanoparticles, and its application to the determination of calcium in blood serum. Microchim Acta 159(3–4):255–261CrossRef
17.
go back to reference R&M (2014) Nanosensor Markets. Nanomarkets (March 2014) R&M (2014) Nanosensor Markets. Nanomarkets (March 2014)
18.
go back to reference Sakata T, Miyahara Y (2006) DNA sequencing based on intrinsic molecular charges. Angew Chem Int Ed 45(14):2225–2228CrossRef Sakata T, Miyahara Y (2006) DNA sequencing based on intrinsic molecular charges. Angew Chem Int Ed 45(14):2225–2228CrossRef
19.
20.
go back to reference Yoon SLaDS (2007) Bionanosensors. BioChip J 193(1):60–70 Yoon SLaDS (2007) Bionanosensors. BioChip J 193(1):60–70
21.
go back to reference Manzetti S (2013) Molecular and crystal assembly inside the carbon nanotube: encapsulation and manufacturing approaches. Adv Manuf 1(13):198–210CrossRef Manzetti S (2013) Molecular and crystal assembly inside the carbon nanotube: encapsulation and manufacturing approaches. Adv Manuf 1(13):198–210CrossRef
22.
go back to reference Khlobystov AN, Britz DA, Briggs GAD (2005) Molecules in carbon nanotubes. Acc Chem Res 38(12):901–909CrossRef Khlobystov AN, Britz DA, Briggs GAD (2005) Molecules in carbon nanotubes. Acc Chem Res 38(12):901–909CrossRef
23.
go back to reference Khlobystov AN (2011) Carbon nanotubes: from nano test tube to nano-reactor. ACS Nano 5(12):9306–9312CrossRef Khlobystov AN (2011) Carbon nanotubes: from nano test tube to nano-reactor. ACS Nano 5(12):9306–9312CrossRef
24.
go back to reference Fischer JE (2002) Chemical doping of single-wall carbon nanotubes. Acc Chem Res 35(12):1079–1086CrossRef Fischer JE (2002) Chemical doping of single-wall carbon nanotubes. Acc Chem Res 35(12):1079–1086CrossRef
25.
go back to reference Lien DH, Hsu WK, Zan HW et al (2006) Photocurrent amplification at carbon nanotube-metal contacts. Adv Mater 18(1):98–103CrossRef Lien DH, Hsu WK, Zan HW et al (2006) Photocurrent amplification at carbon nanotube-metal contacts. Adv Mater 18(1):98–103CrossRef
26.
go back to reference Krusin-Elbaum L, Newns D, Zeng H et al (2004) Room-temperature ferromagnetic nanotubes controlled by electron or hole doping. Nature 431(7009):672–676CrossRef Krusin-Elbaum L, Newns D, Zeng H et al (2004) Room-temperature ferromagnetic nanotubes controlled by electron or hole doping. Nature 431(7009):672–676CrossRef
27.
go back to reference Liu L, Guo G, Jayanthi C et al (2002) Colossal paramagnetic moments in metallic carbon nanotori. Phys Rev Lett 88(21):217206CrossRef Liu L, Guo G, Jayanthi C et al (2002) Colossal paramagnetic moments in metallic carbon nanotori. Phys Rev Lett 88(21):217206CrossRef
28.
go back to reference Hanson GW (2005) Fundamental transmitting properties of carbon nanotube antennas. Antennas Propag IEEE Trans 53(11):3426–3435CrossRef Hanson GW (2005) Fundamental transmitting properties of carbon nanotube antennas. Antennas Propag IEEE Trans 53(11):3426–3435CrossRef
29.
go back to reference Suryavanshi AP, Yu MF, Wen J et al (2004) Elastic modulus and resonance behavior of boron nitride nanotubes. Appl Phys Lett 84(14):2527–2529CrossRef Suryavanshi AP, Yu MF, Wen J et al (2004) Elastic modulus and resonance behavior of boron nitride nanotubes. Appl Phys Lett 84(14):2527–2529CrossRef
30.
go back to reference Poncharal P, Wang Z, Ugarte D et al (1999) Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283(5407):1513–1516CrossRef Poncharal P, Wang Z, Ugarte D et al (1999) Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283(5407):1513–1516CrossRef
31.
go back to reference Purcell S, Vincent P, Journet C et al (2002) Tuning of nanotube mechanical resonances by electric field pulling. Phys Rev Lett 89(27):276103CrossRef Purcell S, Vincent P, Journet C et al (2002) Tuning of nanotube mechanical resonances by electric field pulling. Phys Rev Lett 89(27):276103CrossRef
32.
go back to reference Jensen K, Kim K, Zettl A (2008) An atomic-resolution nanomechanical mass sensor. Nat Nano 3(9):533–537CrossRef Jensen K, Kim K, Zettl A (2008) An atomic-resolution nanomechanical mass sensor. Nat Nano 3(9):533–537CrossRef
33.
go back to reference Peng H, Chang C, Aloni S et al (2006) Ultrahigh frequency nanotube resonators. Phys Rev Lett 97(8):087203CrossRef Peng H, Chang C, Aloni S et al (2006) Ultrahigh frequency nanotube resonators. Phys Rev Lett 97(8):087203CrossRef
34.
go back to reference Wang Q (2005) Wave propagation in carbon nanotubes via nonlocal continuum mechanics. J Appl Phys 98(12):124301CrossRef Wang Q (2005) Wave propagation in carbon nanotubes via nonlocal continuum mechanics. J Appl Phys 98(12):124301CrossRef
35.
go back to reference Wang Q, Varadan V (2006) Vibration of carbon nanotubes studied using nonlocal continuum mechanics. Smart Mater Struct 15(2):659–666CrossRef Wang Q, Varadan V (2006) Vibration of carbon nanotubes studied using nonlocal continuum mechanics. Smart Mater Struct 15(2):659–666CrossRef
36.
go back to reference Murmu T, Adhikari S, Wang CY (2011) Torsional vibration of carbon nanotube-buckyball systems based on nonlocal elasticity theory. Phys E 43(6):1276–1280CrossRef Murmu T, Adhikari S, Wang CY (2011) Torsional vibration of carbon nanotube-buckyball systems based on nonlocal elasticity theory. Phys E 43(6):1276–1280CrossRef
37.
go back to reference Zhang Y, Liu G, Xie X (2005) Free transverse vibrations of double-walled carbon nanotubes using a theory of nonlocal elasticity. Phys Rev B 71(19):195404CrossRef Zhang Y, Liu G, Xie X (2005) Free transverse vibrations of double-walled carbon nanotubes using a theory of nonlocal elasticity. Phys Rev B 71(19):195404CrossRef
38.
go back to reference Warner JH, Watt AA, Ge L et al (2008) Dynamics of paramagnetic metallo fullerenes in carbon nanotube peapods. Nano Lett 8(4):1005–1010CrossRef Warner JH, Watt AA, Ge L et al (2008) Dynamics of paramagnetic metallo fullerenes in carbon nanotube peapods. Nano Lett 8(4):1005–1010CrossRef
39.
go back to reference Kong J, Franklin NR, Zhou C et al (2000) Nanotube molecular wires as chemical sensors. Science 287(5453):622–625CrossRef Kong J, Franklin NR, Zhou C et al (2000) Nanotube molecular wires as chemical sensors. Science 287(5453):622–625CrossRef
40.
go back to reference Law M, Goldberger J, Yang P (2004) Semiconductor nanowires and nanotubes. Annu Rev Mater Res 34:83–122CrossRef Law M, Goldberger J, Yang P (2004) Semiconductor nanowires and nanotubes. Annu Rev Mater Res 34:83–122CrossRef
41.
go back to reference Ebbesen T, Lezec H, Hiura H et al (1996) Electrical conductivity of individual carbon nanotubes. Nature 382:54–56CrossRef Ebbesen T, Lezec H, Hiura H et al (1996) Electrical conductivity of individual carbon nanotubes. Nature 382:54–56CrossRef
42.
go back to reference Baerends EJTZ, Autschbach J, Bashford D et al (2013) Amsterdam density functional. In: SCM, theoretical chemistry, Vrije Universiteit, Amsterdam, The Netherlands. http://www.scm.com Baerends EJTZ, Autschbach J, Bashford D et al (2013) Amsterdam density functional. In: SCM, theoretical chemistry, Vrije Universiteit, Amsterdam, The Netherlands. http://​www.​scm.​com
43.
go back to reference Goerigk L, Grimme S (2011) A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. Phys Chem Chem Phys 13(14):6670–6688CrossRef Goerigk L, Grimme S (2011) A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. Phys Chem Chem Phys 13(14):6670–6688CrossRef
44.
go back to reference Autschbach J (2004) The accuracy of hyperfine integrals in relativistic NMR computations based on the zeroth-order regular approximation. Theor Chem Acc 112(1):52–57CrossRef Autschbach J (2004) The accuracy of hyperfine integrals in relativistic NMR computations based on the zeroth-order regular approximation. Theor Chem Acc 112(1):52–57CrossRef
45.
go back to reference Odom TW, Huang JL, Kim P et al (1998) Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 391(6662):62–64CrossRef Odom TW, Huang JL, Kim P et al (1998) Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 391(6662):62–64CrossRef
46.
go back to reference Jensen L, Åstrand P-O, Mikkelsen KV (2004) The static polarizability and second hyperpolarizability of fullerenes and carbon nanotubes. J Phys Chem A 108(41):8795–8800CrossRef Jensen L, Åstrand P-O, Mikkelsen KV (2004) The static polarizability and second hyperpolarizability of fullerenes and carbon nanotubes. J Phys Chem A 108(41):8795–8800CrossRef
47.
go back to reference Portet C, Yushin G, Gogotsi Y (2007) Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors. Carbon 45(13):2511–2518CrossRef Portet C, Yushin G, Gogotsi Y (2007) Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors. Carbon 45(13):2511–2518CrossRef
48.
go back to reference Bérces ABC, Boerrigter PM, Cavallo L et al (2004) ADF2004.01. In: SCM, theoretical chemistry, Vrije Universitiet, Amsterdam, The Netherlands. http://www.scm.com Bérces ABC, Boerrigter PM, Cavallo L et al (2004) ADF2004.01. In: SCM, theoretical chemistry, Vrije Universitiet, Amsterdam, The Netherlands. http://​www.​scm.​com
49.
go back to reference Sahoo S, Kontos T, Furer J et al (2005) Electric field control of spin transport. Nat Phys 1(2):99–102CrossRef Sahoo S, Kontos T, Furer J et al (2005) Electric field control of spin transport. Nat Phys 1(2):99–102CrossRef
50.
go back to reference Li C, Thostenson ET, Chou TW (2008) Sensors and actuators based on carbon nanotubes and their composites: a review. Compos Sci Technol 68(6):1227–1249CrossRef Li C, Thostenson ET, Chou TW (2008) Sensors and actuators based on carbon nanotubes and their composites: a review. Compos Sci Technol 68(6):1227–1249CrossRef
51.
go back to reference Nakhmanson S, Calzolari A, Meunier V et al (2003) Spontaneous polarization and piezoelectricity in boron nitride nanotubes. Phys Rev B 67(23):235406CrossRef Nakhmanson S, Calzolari A, Meunier V et al (2003) Spontaneous polarization and piezoelectricity in boron nitride nanotubes. Phys Rev B 67(23):235406CrossRef
52.
go back to reference Kim GH, Hong SM, Seo Y (2009) Piezoelectric properties of poly (vinylidene fluoride) and carbon nanotube blends: β-phase development. Phys Chem Chem Phys 11(44):10506–10512CrossRef Kim GH, Hong SM, Seo Y (2009) Piezoelectric properties of poly (vinylidene fluoride) and carbon nanotube blends: β-phase development. Phys Chem Chem Phys 11(44):10506–10512CrossRef
53.
go back to reference Li J, Lu Y, Ye Q et al (2003) Carbon nanotube sensors for gas and organic vapour detection. Nano Lett 3(7):929–933CrossRef Li J, Lu Y, Ye Q et al (2003) Carbon nanotube sensors for gas and organic vapour detection. Nano Lett 3(7):929–933CrossRef
54.
go back to reference Qi P, Vermesh O, Grecu M et al (2003) Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection. Nano Lett 3(3):347–351CrossRef Qi P, Vermesh O, Grecu M et al (2003) Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection. Nano Lett 3(3):347–351CrossRef
55.
go back to reference McGrath M, Pham AVH (2008) Microwave based ammonia detection with vertically aligned carbon nanotube arrays. Sens Lett 6(5):719–722CrossRef McGrath M, Pham AVH (2008) Microwave based ammonia detection with vertically aligned carbon nanotube arrays. Sens Lett 6(5):719–722CrossRef
56.
go back to reference Wang J, Musameh M (2003) Carbon nanotube/teflon composite electrochemical sensors and biosensors. Anal Chem 75(9):2075–2079CrossRef Wang J, Musameh M (2003) Carbon nanotube/teflon composite electrochemical sensors and biosensors. Anal Chem 75(9):2075–2079CrossRef
57.
go back to reference Lee J, Jo M, Kim TH et al (2011) Aptamer sandwich-based carbon nanotube sensors for single-carbon-atomic-resolution detection of non-polar small molecular species. Lab Chip 11(1):52–56MathSciNetCrossRef Lee J, Jo M, Kim TH et al (2011) Aptamer sandwich-based carbon nanotube sensors for single-carbon-atomic-resolution detection of non-polar small molecular species. Lab Chip 11(1):52–56MathSciNetCrossRef
58.
go back to reference Vink T, Gillies M, Kriege J et al (2003) Enhanced field emission from printed carbon nanotubes by mechanical surface modification. Appl Phys Lett 83(17):3552–3554CrossRef Vink T, Gillies M, Kriege J et al (2003) Enhanced field emission from printed carbon nanotubes by mechanical surface modification. Appl Phys Lett 83(17):3552–3554CrossRef
59.
go back to reference Pastine SJ, Okawa D, Kessler B et al (2008) A facile and patternable method for the surface modification of carbon nanotube forests using perfluoroarylazides. J Am Chem Soc 130(13):4238–4239CrossRef Pastine SJ, Okawa D, Kessler B et al (2008) A facile and patternable method for the surface modification of carbon nanotube forests using perfluoroarylazides. J Am Chem Soc 130(13):4238–4239CrossRef
60.
go back to reference Park OK, Jeevananda T, Kim NH et al (2009) Effects of surface modification on the dispersion and electrical conductivity of carbon nanotube/polyaniline composites. Scr Mater 60(7):551–554CrossRef Park OK, Jeevananda T, Kim NH et al (2009) Effects of surface modification on the dispersion and electrical conductivity of carbon nanotube/polyaniline composites. Scr Mater 60(7):551–554CrossRef
61.
go back to reference Kathi J, Rhee K (2008) Surface modification of multi-walled carbon nanotubes using 3-aminopropyltriethoxysilane. J Mater Sci 43(1):33–37CrossRef Kathi J, Rhee K (2008) Surface modification of multi-walled carbon nanotubes using 3-aminopropyltriethoxysilane. J Mater Sci 43(1):33–37CrossRef
62.
go back to reference Belanger D, Pinson J (2011) Electrografting: a powerful method for surface modification. Chem Soc Rev 40(7):3995–4048CrossRef Belanger D, Pinson J (2011) Electrografting: a powerful method for surface modification. Chem Soc Rev 40(7):3995–4048CrossRef
63.
go back to reference Zhao XD, Fan XH, Chen XF et al (2006) Surface modification of multiwalled carbon nanotubes via nitroxide-mediated radical polymerization. J Polym Sci Part A 44(15):4656–4667CrossRef Zhao XD, Fan XH, Chen XF et al (2006) Surface modification of multiwalled carbon nanotubes via nitroxide-mediated radical polymerization. J Polym Sci Part A 44(15):4656–4667CrossRef
64.
go back to reference Kruss S, Hilmer AJ, Zhang J et al (2013) Carbon nanotubes as optical biomedical sensors. Adv Drug Deliv Rev 65(15):1933–1950CrossRef Kruss S, Hilmer AJ, Zhang J et al (2013) Carbon nanotubes as optical biomedical sensors. Adv Drug Deliv Rev 65(15):1933–1950CrossRef
65.
go back to reference Avouris P, Freitag M, Perebeinos V (2008) Carbon-nanotube photonics and optoelectronics. Nat Photonics 2(6):341–350CrossRef Avouris P, Freitag M, Perebeinos V (2008) Carbon-nanotube photonics and optoelectronics. Nat Photonics 2(6):341–350CrossRef
66.
go back to reference Barone PW, Baik S, Heller DA et al (2004) Near-infrared optical sensors based on single-walled carbon nanotubes. Nat Mater 4(1):86–92CrossRef Barone PW, Baik S, Heller DA et al (2004) Near-infrared optical sensors based on single-walled carbon nanotubes. Nat Mater 4(1):86–92CrossRef
67.
go back to reference Barone PW, Strano MS (2006) Reversible control of carbon nanotube aggregation for a glucose affinity sensor. Angew Chem 118(48):8318–8321CrossRef Barone PW, Strano MS (2006) Reversible control of carbon nanotube aggregation for a glucose affinity sensor. Angew Chem 118(48):8318–8321CrossRef
68.
go back to reference Satishkumar B, Brown LO, Gao Y et al (2007) Reversible fluorescence quenching in carbon nanotubes for biomolecular sensing. Nat Nanotechnol 2(9):560–564CrossRef Satishkumar B, Brown LO, Gao Y et al (2007) Reversible fluorescence quenching in carbon nanotubes for biomolecular sensing. Nat Nanotechnol 2(9):560–564CrossRef
69.
go back to reference Heller DA, Jin H, Martinez BM et al (2008) Multimodal optical sensing and analyte specificity using single-walled carbon nanotubes. Nat Nanotechnol 4(2):114–120CrossRef Heller DA, Jin H, Martinez BM et al (2008) Multimodal optical sensing and analyte specificity using single-walled carbon nanotubes. Nat Nanotechnol 4(2):114–120CrossRef
70.
go back to reference Krauss TD (2009) Biosensors: nanotubes light up cells. Nat Nanotechnol 4(2):85–86CrossRef Krauss TD (2009) Biosensors: nanotubes light up cells. Nat Nanotechnol 4(2):85–86CrossRef
71.
go back to reference Kang X, Wang J, Wu H et al (2010) A graphene-based electrochemical sensor for sensitive detection of paracetamol. Talanta 81(3):754–759CrossRef Kang X, Wang J, Wu H et al (2010) A graphene-based electrochemical sensor for sensitive detection of paracetamol. Talanta 81(3):754–759CrossRef
72.
go back to reference Pumera M (2010) Graphene-based nanomaterials and their electrochemistry. Chem Soc Rev 39(11):4146–4157CrossRef Pumera M (2010) Graphene-based nanomaterials and their electrochemistry. Chem Soc Rev 39(11):4146–4157CrossRef
73.
go back to reference Wang X, Ouyang Y, Li X et al (2008) Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys Rev Lett 100(20):206803CrossRef Wang X, Ouyang Y, Li X et al (2008) Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys Rev Lett 100(20):206803CrossRef
74.
go back to reference Meric I, Han MY, Young AF et al (2008) Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nat Nanotechnol 3(11):654–659CrossRef Meric I, Han MY, Young AF et al (2008) Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nat Nanotechnol 3(11):654–659CrossRef
75.
go back to reference Xia F, Farmer DB, Lin YM et al (2010) Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett 10(2):715–718CrossRef Xia F, Farmer DB, Lin YM et al (2010) Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett 10(2):715–718CrossRef
76.
go back to reference Lee CG, Park S, Ruoff RS et al (2009) Integration of reduced graphene oxide into organic field-effect transistors as conducting electrodes and as a metal modification layer. Appl Phys Lett 95(2):023304CrossRef Lee CG, Park S, Ruoff RS et al (2009) Integration of reduced graphene oxide into organic field-effect transistors as conducting electrodes and as a metal modification layer. Appl Phys Lett 95(2):023304CrossRef
77.
go back to reference Wang L, Chen X, Yu A et al (2014) Highly sensitive and wide-band tunable terahertz response of plasma waves based on graphene field effect transistors. Sci Rep 4:5470 Wang L, Chen X, Yu A et al (2014) Highly sensitive and wide-band tunable terahertz response of plasma waves based on graphene field effect transistors. Sci Rep 4:5470
78.
go back to reference He Q, Wu S, Yin Z et al (2012) Graphene-based electronic sensors. Chem Sci 3(6):1764–1772CrossRef He Q, Wu S, Yin Z et al (2012) Graphene-based electronic sensors. Chem Sci 3(6):1764–1772CrossRef
79.
go back to reference Yavari F, Chen Z, Thomas AV et al (2011) High sensitivity gas detection using a macroscopic three-dimensional graphene foam network. Sci Rep 1:166CrossRef Yavari F, Chen Z, Thomas AV et al (2011) High sensitivity gas detection using a macroscopic three-dimensional graphene foam network. Sci Rep 1:166CrossRef
80.
go back to reference Zhang Y, Tang TT, Girit C et al (2009) Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459(7248):820–823CrossRef Zhang Y, Tang TT, Girit C et al (2009) Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459(7248):820–823CrossRef
81.
go back to reference Kuila T, Bose S, Khanra P et al (2011) Recent advances in graphene-based biosensors. Biosens Bioelectron 26(12):4637–4648CrossRef Kuila T, Bose S, Khanra P et al (2011) Recent advances in graphene-based biosensors. Biosens Bioelectron 26(12):4637–4648CrossRef
82.
go back to reference Wu JF, Xu MQ, Zhao GC (2010) Graphene-based modified electrode for the direct electron transfer of cytochrome c and biosensing. Electrochem Commun 12(1):175–177CrossRef Wu JF, Xu MQ, Zhao GC (2010) Graphene-based modified electrode for the direct electron transfer of cytochrome c and biosensing. Electrochem Commun 12(1):175–177CrossRef
83.
go back to reference Shan C, Yang H, Han D et al (2010) Electrochemical determination of NADH and ethanol based on ionic liquid-functionalized graphene. Biosens Bioelectron 25(6):1504–1508CrossRef Shan C, Yang H, Han D et al (2010) Electrochemical determination of NADH and ethanol based on ionic liquid-functionalized graphene. Biosens Bioelectron 25(6):1504–1508CrossRef
84.
go back to reference Xu H, Dai H, Chen G (2010) Direct electrochemistry and electrocatalysis of hemoglobin protein entrapped in graphene and chitosan composite film. Talanta 81(1):334–338CrossRef Xu H, Dai H, Chen G (2010) Direct electrochemistry and electrocatalysis of hemoglobin protein entrapped in graphene and chitosan composite film. Talanta 81(1):334–338CrossRef
85.
go back to reference Song Y, He Z, Hou H et al (2012) Architecture of Fe3O4-graphene oxide nanocomposite and its application as a platform for amino acid biosensing. Electrochim Acta 71:58–65CrossRef Song Y, He Z, Hou H et al (2012) Architecture of Fe3O4-graphene oxide nanocomposite and its application as a platform for amino acid biosensing. Electrochim Acta 71:58–65CrossRef
86.
go back to reference Shao Y, Wang J, Wu H et al (2010) Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22(10):1027–1036CrossRef Shao Y, Wang J, Wu H et al (2010) Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22(10):1027–1036CrossRef
87.
go back to reference He S, Song B, Li D et al (2010) A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis. Adv Funct Mater 20(3):453–459CrossRef He S, Song B, Li D et al (2010) A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis. Adv Funct Mater 20(3):453–459CrossRef
88.
go back to reference Wang B, Chang YH, Zhi LJ (2011) High yield production of graphene and its improved property in detecting heavy metal ions. New Carbon Mater 26(1):31–35CrossRef Wang B, Chang YH, Zhi LJ (2011) High yield production of graphene and its improved property in detecting heavy metal ions. New Carbon Mater 26(1):31–35CrossRef
89.
go back to reference Lu G, Ocola LE, Chen J (2009) Gas detection using low-temperature reduced graphene oxide sheets. Appl Phys Lett 94(8):083111CrossRef Lu G, Ocola LE, Chen J (2009) Gas detection using low-temperature reduced graphene oxide sheets. Appl Phys Lett 94(8):083111CrossRef
90.
go back to reference Jaaniso R, Kahro T, Kozlova J et al (2014) Temperature induced inversion of oxygen response in CVD graphene on SiO2. Sens Actuators B 190:1006–1013CrossRef Jaaniso R, Kahro T, Kozlova J et al (2014) Temperature induced inversion of oxygen response in CVD graphene on SiO2. Sens Actuators B 190:1006–1013CrossRef
91.
go back to reference Huh S, Park J, Kim KS et al (2011) Selective n-type doping of graphene by photo-patterned gold nanoparticles. ACS Nano 5(5):3639–3644CrossRef Huh S, Park J, Kim KS et al (2011) Selective n-type doping of graphene by photo-patterned gold nanoparticles. ACS Nano 5(5):3639–3644CrossRef
Metadata
Title
Emerging carbon-based nanosensor devices: structures, functions and applications
Authors
S. Manzetti
D. Vasilache
E. Francesco
Publication date
01-03-2015
Publisher
Shanghai University
Published in
Advances in Manufacturing / Issue 1/2015
Print ISSN: 2095-3127
Electronic ISSN: 2195-3597
DOI
https://doi.org/10.1007/s40436-015-0100-y

Other articles of this Issue 1/2015

Advances in Manufacturing 1/2015 Go to the issue

Premium Partners