Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

20-01-2020 | Original Article | Issue 4/2020

International Journal of Machine Learning and Cybernetics 4/2020

Emotion recognition using multimodal deep learning in multiple psychophysiological signals and video

Journal:
International Journal of Machine Learning and Cybernetics > Issue 4/2020
Authors:
Zhongmin Wang, Xiaoxiao Zhou, Wenlang Wang, Chen Liang
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Emotion recognition has attracted great interest. Numerous emotion recognition approaches have been proposed, most of which focus on visual, acoustic or psychophysiological information individually. Although more recent research has considered multimodal approaches, individual modalities are often combined only by simple fusion or are directly fused with deep learning networks at the feature level. In this paper, we propose an approach to training several specialist networks that employs deep learning techniques to fuse the features of individual modalities. This approach includes a multimodal deep belief network (MDBN), which optimizes and fuses unified psychophysiological features derived from the features of multiple psychophysiological signals, a bimodal deep belief network (BDBN) that focuses on representative visual features among the features of a video stream, and another BDBN that focuses on the high multimodal features in the unified features obtained from two modalities. Experiments are conducted on the BioVid Emo DB database and 80.89% accuracy is achieved, which outperforms the state-of-the-art approaches. The results demonstrate that the proposed approach can solve the problems of feature redundancy and lack of key features caused by multimodal fusion.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 4/2020

International Journal of Machine Learning and Cybernetics 4/2020 Go to the issue