Skip to main content
Top
Published in:

01-12-2023 | Original Article

Emotional sentiment analysis of social media content for mental health safety

Authors: Ferdaous Benrouba, Rachid Boudour

Published in: Social Network Analysis and Mining | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The article delves into the growing concern of excessive social media use and its detrimental effects on mental health, particularly among the younger generation. It highlights the need for emotional sentiment analysis to identify and filter harmful content. The authors propose a method using Twitter API and IBM's Natural Language Understanding API to classify tweets into five emotional categories and calculate the Euclidean distance to determine emotional safety. The approach is validated through practical examples and demonstrates the potential to protect users from emotionally harmful content. The study underscores the importance of AI in mental health safety and suggests future research directions for improving the accuracy of emotion recognition tools.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abualigah LMQ (2019) Feature selection and enhanced Krill Herd algorithm for text document clustering. Springer, BerlinCrossRef Abualigah LMQ (2019) Feature selection and enhanced Krill Herd algorithm for text document clustering. Springer, BerlinCrossRef
go back to reference Abualigah L, Gandomi AH, Elaziz MA, Hamad HA, Omari M, Alshinwan M, Khasawneh AM (2021) Advances in meta-heuristic optimization algorithms in big data text clustering. Electronics 10:101CrossRef Abualigah L, Gandomi AH, Elaziz MA, Hamad HA, Omari M, Alshinwan M, Khasawneh AM (2021) Advances in meta-heuristic optimization algorithms in big data text clustering. Electronics 10:101CrossRef
go back to reference Abualigah L, Diabat A, Mirjalili S, Abd Elaziz M, Gandomi AH (2021) The arithmetic optimization algorithm. Comput Methods Appl Mech Eng 376:113609MathSciNetCrossRef Abualigah L, Diabat A, Mirjalili S, Abd Elaziz M, Gandomi AH (2021) The arithmetic optimization algorithm. Comput Methods Appl Mech Eng 376:113609MathSciNetCrossRef
go back to reference Abualigah L, Yousri D, Abd Elaziz M, Ewees AA, Al-qaness M, Gandomi AH (2021) Aquila optimizer: a novel meta-heuristic optimization algorithm. Comput Ind Eng 157:107250CrossRef Abualigah L, Yousri D, Abd Elaziz M, Ewees AA, Al-qaness M, Gandomi AH (2021) Aquila optimizer: a novel meta-heuristic optimization algorithm. Comput Ind Eng 157:107250CrossRef
go back to reference Ahmad S, Asghar MZ, Alotaibi FM, Awan I (2019) Detection and classification of social media-based extremist affiliations using sentiment analysis techniques. Hum Centric Comput Inf Sci 9:24CrossRef Ahmad S, Asghar MZ, Alotaibi FM, Awan I (2019) Detection and classification of social media-based extremist affiliations using sentiment analysis techniques. Hum Centric Comput Inf Sci 9:24CrossRef
go back to reference Al Shehhi A, Thomas J, Welsch R, Grey I, Aung Z (2019) Arabia Felix 2.0: a cross-linguistic Twitter analysis of happiness patterns in the United Arab Emirates. J Big Data 6:33CrossRef Al Shehhi A, Thomas J, Welsch R, Grey I, Aung Z (2019) Arabia Felix 2.0: a cross-linguistic Twitter analysis of happiness patterns in the United Arab Emirates. J Big Data 6:33CrossRef
go back to reference Aloufi S, El Saddik A (2018) Sentiment identification in football-specific tweets. IEEE Access 6:78609–78621CrossRef Aloufi S, El Saddik A (2018) Sentiment identification in football-specific tweets. IEEE Access 6:78609–78621CrossRef
go back to reference Ansari L, Ji S, Chen Q, Cambria E (2022) Ensemble hybrid learning methods for automated depression detection. IEEE Trans Comput Soc Syst Ansari L, Ji S, Chen Q, Cambria E (2022) Ensemble hybrid learning methods for automated depression detection. IEEE Trans Comput Soc Syst
go back to reference Arias M, Arratia A, Xuriguera R (2013) Forecasting with Twitter data. ACM Trans Intell Syst Technol 5:8CrossRef Arias M, Arratia A, Xuriguera R (2013) Forecasting with Twitter data. ACM Trans Intell Syst Technol 5:8CrossRef
go back to reference Boivin M, Hymel S, Bukowski WM (1995) The roles of social withdrawal, peer rejection, and victimization by peers in predicting loneliness and depressed mood in childhood. Dev Psychopathol 7(04):765–785CrossRef Boivin M, Hymel S, Bukowski WM (1995) The roles of social withdrawal, peer rejection, and victimization by peers in predicting loneliness and depressed mood in childhood. Dev Psychopathol 7(04):765–785CrossRef
go back to reference Budiharto W, Meiliana M (2018) Prediction and analysis of Indonesia Presidential election from Twitter using sentiment analysis. J Big Data 5:51CrossRef Budiharto W, Meiliana M (2018) Prediction and analysis of Indonesia Presidential election from Twitter using sentiment analysis. J Big Data 5:51CrossRef
go back to reference Cambria E, Hussain A, Durrani T, Havasi C, Eckl C, Munro J (2010) Sentic computing for patient centered applications. In: IEEE 10th international conference on signal processing proceedings. IEEE, pp 1279–1282 Cambria E, Hussain A, Durrani T, Havasi C, Eckl C, Munro J (2010) Sentic computing for patient centered applications. In: IEEE 10th international conference on signal processing proceedings. IEEE, pp 1279–1282
go back to reference Chen Q, Chaturvedi I, Ji S, Cambria E (2021) Sequential fusion of facial appearance and dynamics for depression recognition. Pattern Recogn Lett 150:115–121CrossRef Chen Q, Chaturvedi I, Ji S, Cambria E (2021) Sequential fusion of facial appearance and dynamics for depression recognition. Pattern Recogn Lett 150:115–121CrossRef
go back to reference Chou KL, Liang K, Sareen J (2011) The association between social isolation and DSMIV mood, anxiety, and substance use disorders: wave 2 of the national epidemiologic survey on alcohol and related conditions. J Clin Psychiatry 72(11):1468–1476CrossRef Chou KL, Liang K, Sareen J (2011) The association between social isolation and DSMIV mood, anxiety, and substance use disorders: wave 2 of the national epidemiologic survey on alcohol and related conditions. J Clin Psychiatry 72(11):1468–1476CrossRef
go back to reference Cury RM (2019) Oscillation of tweet sentiments in the election of João Doria Jr. for Mayor. J Big Data 6:42CrossRef Cury RM (2019) Oscillation of tweet sentiments in the election of João Doria Jr. for Mayor. J Big Data 6:42CrossRef
go back to reference Davila J, Hershenberg R, Feinstein BA, Gorman K, Bhatia V, Starr LR (2012) Frequency and quality of social networking among young adults: associations with depressive symptoms, rumination, and co-rumination. Psychol Pop Media Cult 1(2):72–86CrossRef Davila J, Hershenberg R, Feinstein BA, Gorman K, Bhatia V, Starr LR (2012) Frequency and quality of social networking among young adults: associations with depressive symptoms, rumination, and co-rumination. Psychol Pop Media Cult 1(2):72–86CrossRef
go back to reference Deters F, Mehl MR (2012) Does posting Facebook status updates increase or decrease loneliness? An online social networking experiment. Soc Psychol Personal Sci 1948550612469233 Deters F, Mehl MR (2012) Does posting Facebook status updates increase or decrease loneliness? An online social networking experiment. Soc Psychol Personal Sci 1948550612469233
go back to reference Drouin M, Kaiser DH, Miller DA (2012) Phantom vibrations among undergraduates: prevalence and associated psychological characteristics. Comput Hum Behav 28:1490–1496CrossRef Drouin M, Kaiser DH, Miller DA (2012) Phantom vibrations among undergraduates: prevalence and associated psychological characteristics. Comput Hum Behav 28:1490–1496CrossRef
go back to reference Han S, Mao R, Cambria E (2022) Hierarchical attention network for explainable depression detection on Twitter aided by metaphor concept mappings. arXiv preprint arXiv:2209.07494 Han S, Mao R, Cambria E (2022) Hierarchical attention network for explainable depression detection on Twitter aided by metaphor concept mappings. arXiv preprint arXiv:​2209.​07494
go back to reference Jansen BJ, Zhang M, Sobel K, Chowdury A (2009) Twitter power: Tweets as electronic word of mouth. J Am Soc Inf Sci Technol 60:2169–2188CrossRef Jansen BJ, Zhang M, Sobel K, Chowdury A (2009) Twitter power: Tweets as electronic word of mouth. J Am Soc Inf Sci Technol 60:2169–2188CrossRef
go back to reference Ji S, Li X, Huang Z, Cambria E (2022) Suicidal ideation and mental disorder detection with attentive relation networks. Neural Comput Appl 34(13):10309–10319CrossRef Ji S, Li X, Huang Z, Cambria E (2022) Suicidal ideation and mental disorder detection with attentive relation networks. Neural Comput Appl 34(13):10309–10319CrossRef
go back to reference Komal M, Joshi MS (2016) Effectiveness of different similarity measures for text classification and clustering. Int J Comput Sci Inf Technol 7:1715–1720 Komal M, Joshi MS (2016) Effectiveness of different similarity measures for text classification and clustering. Int J Comput Sci Inf Technol 7:1715–1720
go back to reference Leung CWK (2009) Sentiment analysis of product reviews. In: Encyclopedia of data warehousing and mining, 2nd edn. IGI Global, pp 1794–1799 Leung CWK (2009) Sentiment analysis of product reviews. In: Encyclopedia of data warehousing and mining, 2nd edn. IGI Global, pp 1794–1799
go back to reference Morente-Molinera JA, Kou G, Samuylov K, Urena R, Herrera-Viedma E (2019) Carrying out consensual Group Decision Making processes under social networks using sentiment analysis over comparative expressions. Knowl Based Syst 165:335–345CrossRef Morente-Molinera JA, Kou G, Samuylov K, Urena R, Herrera-Viedma E (2019) Carrying out consensual Group Decision Making processes under social networks using sentiment analysis over comparative expressions. Knowl Based Syst 165:335–345CrossRef
go back to reference Mountaga D, Chayma F, Hatem H (2021) Bambara language dataset for sentiment analysis, conference paper ICLR Mountaga D, Chayma F, Hatem H (2021) Bambara language dataset for sentiment analysis, conference paper ICLR
go back to reference Pong-inwong C, Songpan W (2018) Sentiment analysis in teaching evaluations using sentiment phrase pattern matching (SPPM) based on association mining. Int J Mach Learn Cybern 10:2177–2186CrossRef Pong-inwong C, Songpan W (2018) Sentiment analysis in teaching evaluations using sentiment phrase pattern matching (SPPM) based on association mining. Int J Mach Learn Cybern 10:2177–2186CrossRef
go back to reference Prabhu BA, Ashwini B, Khan TA, Das A (2019) Predicting election result with sentimental analysis using Twitter data for candidate selection. In: Innovations in computer science and engineering. Springer, Berlin, pp 49–55 Prabhu BA, Ashwini B, Khan TA, Das A (2019) Predicting election result with sentimental analysis using Twitter data for candidate selection. In: Innovations in computer science and engineering. Springer, Berlin, pp 49–55
go back to reference Ringsquandl M, Petkovic D (2013) Analyzing political sentiment on Twitter. In: Proceedings of the 2013 AAAI spring symposium series, Stanford, pp 25–27 Ringsquandl M, Petkovic D (2013) Analyzing political sentiment on Twitter. In: Proceedings of the 2013 AAAI spring symposium series, Stanford, pp 25–27
go back to reference Risch J, Krestel R (2018) Aggression identification using deep learning and data augmentation. In: Proceedings of the first workshop on trolling, aggression and cyberbullying (TRAC-2018), Santa Fe, NM, USA, pp 150–158 Risch J, Krestel R (2018) Aggression identification using deep learning and data augmentation. In: Proceedings of the first workshop on trolling, aggression and cyberbullying (TRAC-2018), Santa Fe, NM, USA, pp 150–158
go back to reference Souri A, Hosseinpour S, Rahmani AM (2018) Personality classification based on profiles of social network users and the five-factor model of personality. Hum Centric Comput Inf Sci 8:24CrossRef Souri A, Hosseinpour S, Rahmani AM (2018) Personality classification based on profiles of social network users and the five-factor model of personality. Hum Centric Comput Inf Sci 8:24CrossRef
go back to reference Subramani S, Wang H, Vu HQ, Li G (2018) Domestic violence crisis identification from Facebook posts based on deep learning. IEEE Access 6:54075–54085CrossRef Subramani S, Wang H, Vu HQ, Li G (2018) Domestic violence crisis identification from Facebook posts based on deep learning. IEEE Access 6:54075–54085CrossRef
go back to reference Subramani S, Michalska S, Wang H, Du J, Zhang Y, Shakeel H (2019) Deep learning for multi-class identification from domestic violence online posts. IEEE Access 7:46210–46224CrossRef Subramani S, Michalska S, Wang H, Du J, Zhang Y, Shakeel H (2019) Deep learning for multi-class identification from domestic violence online posts. IEEE Access 7:46210–46224CrossRef
go back to reference Yuan S, Huang H, Wu L (2016) Use of word clustering to improve emotion recognition from short text. J Comput Sci Eng 10(4):103–110CrossRef Yuan S, Huang H, Wu L (2016) Use of word clustering to improve emotion recognition from short text. J Comput Sci Eng 10(4):103–110CrossRef
go back to reference Ji, S., Pan, S., Li, X., Cambria, E., Long, G., & Huang, Z. (2020). Suicidal ideation detection: A review of machine learning methods and applications. IEEE Transactions on Computational Social Systems, 8(1), 214- 226. Ji, S., Pan, S., Li, X., Cambria, E., Long, G., & Huang, Z. (2020). Suicidal ideation detection: A review of machine learning methods and applications. IEEE Transactions on Computational Social Systems, 8(1), 214- 226.
go back to reference Han, S., Mao, R., & Cambria, E. (2022). Hierarchical attention network for explainable depression detection on Twitter aided by metaphor concept mappings. arXiv preprint arXiv:2209.07494. Han, S., Mao, R., & Cambria, E. (2022). Hierarchical attention network for explainable depression detection on Twitter aided by metaphor concept mappings. arXiv preprint arXiv:2209.07494.
Metadata
Title
Emotional sentiment analysis of social media content for mental health safety
Authors
Ferdaous Benrouba
Rachid Boudour
Publication date
01-12-2023
Publisher
Springer Vienna
Published in
Social Network Analysis and Mining / Issue 1/2023
Print ISSN: 1869-5450
Electronic ISSN: 1869-5469
DOI
https://doi.org/10.1007/s13278-022-01000-9

Premium Partner