Skip to main content
Top
Published in:

27-09-2024

Empirical mathematical model based on optimized parameter extraction from captured electrohydrodynamic inkjet memristor device with LTspice model

Authors: Eman Omar, Hesham H. Aly, Ola E. Hassan, Mostafa Fedawy

Published in: Journal of Computational Electronics | Issue 6/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This research presents a simulating electrohydrodynamically (EHD) inkjet-printed memristors in LTspice environment, a popular tool for analog circuit simulation. EHD printing technique is used as one of low cost fabrication technique for fabricate flexible thin films and memristors with high precision and resolution in a scale of nanometers. Memristors are cutting-edge components for AI hardware, and they can be fabricated through various methods, including traditional semiconductor processes and printed electronics techniques. However, printed electronics fabrication based for memristor modeling accurately remains a challenge. This paper introduces a mathematical model specifically for (EHD) inkjet-printed memristors, employing empirical mathematics to ensure compatibility with LTspice. While the modeling of printed electronic devices still in the early stage—to the knowledge of the authors-this paper will discuss for the first time mathematical and Spice modeling for printed memristor. The model is validated against actual memristors with a sandwiched structure (\(\text {Ag/ZrO}_{2}/\text {Ag}\)), showing acceptable error percentage. It involves modifying an existing memristor model by incorporating a function that reflects the characteristics of the EHD printing process. This function is designed to capture the impact of the printing technique on various device parameters, such as width and length, with a focus on accurately modeling the width in the LTspice environment. This paper presents a developed LTspice model based on the proposed empirical mathematical model. The results are based on different sizes: 40 nm, 120 nm, 680 nm, respectively.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Xu, Y., et al.: Artificial intelligence: a powerful paradigm for scientific research. The Innovation 2(4), 100179 (2021)CrossRef Xu, Y., et al.: Artificial intelligence: a powerful paradigm for scientific research. The Innovation 2(4), 100179 (2021)CrossRef
2.
go back to reference Batra, G., Jacobson, Z., Madhav, S., Queirolo, A., Santhanam, N.: Artificial-Intelligence Hardware: New Opportunities for Semiconductor companies. McKinsey and Company (2019) Batra, G., Jacobson, Z., Madhav, S., Queirolo, A., Santhanam, N.: Artificial-Intelligence Hardware: New Opportunities for Semiconductor companies. McKinsey and Company (2019)
3.
go back to reference Camuñas-Mesa, L.A., Bernabé, B., Serrano-Gotarredona, T.: Neuromorphic spiking neural networks and their memristor-CMOS hardware implementations. Materials 12(17), 2745 (2019)CrossRef Camuñas-Mesa, L.A., Bernabé, B., Serrano-Gotarredona, T.: Neuromorphic spiking neural networks and their memristor-CMOS hardware implementations. Materials 12(17), 2745 (2019)CrossRef
4.
go back to reference Zidan, M.A., Strachan, J.P., Lu, W.D.: The future of electronics based on memristive systems. Nat. Electron. 1, 22–29 (2018)CrossRef Zidan, M.A., Strachan, J.P., Lu, W.D.: The future of electronics based on memristive systems. Nat. Electron. 1, 22–29 (2018)CrossRef
5.
go back to reference Xiao, Y., Jiang, B., Zhang, Z., Ke, S., Jin, Y., Wen, X., Ye, C.: A review of memristor: material and structure design, device performance, applications and prospects. Sci. Technol. Adv. Mater. 24(1), 2162323 (2023)CrossRef Xiao, Y., Jiang, B., Zhang, Z., Ke, S., Jin, Y., Wen, X., Ye, C.: A review of memristor: material and structure design, device performance, applications and prospects. Sci. Technol. Adv. Mater. 24(1), 2162323 (2023)CrossRef
6.
go back to reference Yu, Y., Xiao, M., Fieser, D., Zhou, W., Hu, A.: Nanoscale memristor devices: materials, fabrication, and artificial intelligence. J. Mater. Chem. C 12, 3770–3810 (2024)CrossRef Yu, Y., Xiao, M., Fieser, D., Zhou, W., Hu, A.: Nanoscale memristor devices: materials, fabrication, and artificial intelligence. J. Mater. Chem. C 12, 3770–3810 (2024)CrossRef
7.
go back to reference Beedasy, V., Smith, P.J.: Printed electronics as prepared by inkjet printing. Materials 13(3), 704 (2020)CrossRef Beedasy, V., Smith, P.J.: Printed electronics as prepared by inkjet printing. Materials 13(3), 704 (2020)CrossRef
8.
go back to reference Ali, S., Khan, S., Khan, A., Bermak, A.: Memristor fabrication through printing technologies: a review. IEEE Access 9, 95970–95985 (2021)CrossRef Ali, S., Khan, S., Khan, A., Bermak, A.: Memristor fabrication through printing technologies: a review. IEEE Access 9, 95970–95985 (2021)CrossRef
9.
go back to reference Gokcen, D.: Memristor based multi-state shift register architecture. Hittite J. Sci. Eng. 6, 185–191 (2019)CrossRef Gokcen, D.: Memristor based multi-state shift register architecture. Hittite J. Sci. Eng. 6, 185–191 (2019)CrossRef
10.
go back to reference Hu, H., Scholz, A., Dolle, C., Zintler, A., Quintilla, A., Liu, Y., Tang, Y., Breitung, B., Cadilha Marques, G., Eggeler, Y., Aghassi-Hagmann, J.: Inkjet-printed tungsten oxide memristor displaying non-volatile memory and neuromorphic properties. Adv. Funct. Mater. 34, 2302290 (2023)CrossRef Hu, H., Scholz, A., Dolle, C., Zintler, A., Quintilla, A., Liu, Y., Tang, Y., Breitung, B., Cadilha Marques, G., Eggeler, Y., Aghassi-Hagmann, J.: Inkjet-printed tungsten oxide memristor displaying non-volatile memory and neuromorphic properties. Adv. Funct. Mater. 34, 2302290 (2023)CrossRef
11.
go back to reference Zhu, K., Vescio, G., González-Torres, S., López-Vidrier, J., Frieiro Castro, J.L., Pazos, S., Jing, X., Gao, X., Wang, S.-D., Ascorbe-Muruzábal, J., Ruiz-Fuentes, J., Cirera, A., Garrido, B., Lanza, M.: Inkjet-printed h-BN memristors for hardware security. Nanoscale 15, 9985–9992 (2023)CrossRef Zhu, K., Vescio, G., González-Torres, S., López-Vidrier, J., Frieiro Castro, J.L., Pazos, S., Jing, X., Gao, X., Wang, S.-D., Ascorbe-Muruzábal, J., Ruiz-Fuentes, J., Cirera, A., Garrido, B., Lanza, M.: Inkjet-printed h-BN memristors for hardware security. Nanoscale 15, 9985–9992 (2023)CrossRef
12.
go back to reference Jayarahini, J., Udhayavani, M.: Modeling and simulation of memristor using spice model. Asian J. Appl. Sci. Technol. 1(2), 31–35 (2017) Jayarahini, J., Udhayavani, M.: Modeling and simulation of memristor using spice model. Asian J. Appl. Sci. Technol. 1(2), 31–35 (2017)
13.
go back to reference Mladenov, V.: A unified and open LTSPICE memristor model library. Electronics 10(13), 1594 (2021)CrossRef Mladenov, V.: A unified and open LTSPICE memristor model library. Electronics 10(13), 1594 (2021)CrossRef
14.
go back to reference Omar, E., Aly, H., Fedawy, M.: A brief introduction to memristor device. Int. J. Adv. Eng. Bus. Sci. 4(2), 171–198 (2023) Omar, E., Aly, H., Fedawy, M.: A brief introduction to memristor device. Int. J. Adv. Eng. Bus. Sci. 4(2), 171–198 (2023)
15.
go back to reference Isah, A., Bilbault, J.-M.: Review on the basic circuit elements and memristor interpretation: analysis, technology and applications. J. Low Power Electron. Appl. 12(3), 44 (2022)CrossRef Isah, A., Bilbault, J.-M.: Review on the basic circuit elements and memristor interpretation: analysis, technology and applications. J. Low Power Electron. Appl. 12(3), 44 (2022)CrossRef
16.
go back to reference Strukov, D., Snider, G., Stewart, D., Williams, S.: The missing memristor found. Nature 453, 80–3 (2008)CrossRef Strukov, D., Snider, G., Stewart, D., Williams, S.: The missing memristor found. Nature 453, 80–3 (2008)CrossRef
17.
go back to reference Ostrovskii, V., Fedoseev, P., Bobrova, Y., Butusov, D.: Structural and parametric identification of knowm memristors. Nanomaterials 12(1), 63 (2022)CrossRef Ostrovskii, V., Fedoseev, P., Bobrova, Y., Butusov, D.: Structural and parametric identification of knowm memristors. Nanomaterials 12(1), 63 (2022)CrossRef
18.
go back to reference Yakopcic, C., Taha, T.M., Subramanyam, G., Pino, R.E., Rogers, S.: A memristor device model. IEEE Electron Device Lett. 32(10), 1436–1438 (2011)CrossRef Yakopcic, C., Taha, T.M., Subramanyam, G., Pino, R.E., Rogers, S.: A memristor device model. IEEE Electron Device Lett. 32(10), 1436–1438 (2011)CrossRef
19.
go back to reference Yakopcic, C., Taha, T.M., Subramanyam, G., Pino, R.E.: Generalized memristive device spice model and its application in circuit design. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 32(8), 1201–1214 (2013)CrossRef Yakopcic, C., Taha, T.M., Subramanyam, G., Pino, R.E.: Generalized memristive device spice model and its application in circuit design. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 32(8), 1201–1214 (2013)CrossRef
20.
go back to reference Yakopcic, C., Taha, T.M., Subramanyam, G., Pino, R.E.: Memristor spice model and crossbar simulation based on devices with nanosecond switching time. In: The 2013 International Joint Conference on Neural Networks (IJCNN), pp. 1–7 (2013) Yakopcic, C., Taha, T.M., Subramanyam, G., Pino, R.E.: Memristor spice model and crossbar simulation based on devices with nanosecond switching time. In: The 2013 International Joint Conference on Neural Networks (IJCNN), pp. 1–7 (2013)
21.
go back to reference Yakopcic, C., Taha, T.M., Mountain, D.J., Salter, T., Marinella, M.J., McLean, M.: Memristor model optimization based on parameter extraction from device characterization data. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 39(5), 1084–1095 (2020)CrossRef Yakopcic, C., Taha, T.M., Mountain, D.J., Salter, T., Marinella, M.J., McLean, M.: Memristor model optimization based on parameter extraction from device characterization data. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 39(5), 1084–1095 (2020)CrossRef
22.
go back to reference Tyagi, A., Kvatinsky, S.: Assessing the performance of stateful logic in 1-selector-1-RRAM crossbar arrays. In: 2024 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE (2024) Tyagi, A., Kvatinsky, S.: Assessing the performance of stateful logic in 1-selector-1-RRAM crossbar arrays. In: 2024 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE (2024)
23.
go back to reference Lee, Y., Kim, K., Lee, J.: A compact memristor model based on physics-informed neural networks. Micromachines 15(2), 253 (2024)CrossRef Lee, Y., Kim, K., Lee, J.: A compact memristor model based on physics-informed neural networks. Micromachines 15(2), 253 (2024)CrossRef
24.
go back to reference Zhevnenko, D.A., Meshchaninov, F.P., Kozhevnikov, V.S., Shamin, E.S., Telminov, O.A., Gornev, E.S.: Research and development of parameter extraction approaches for memristor models. Micromachines 12(10), 1220 (2021)CrossRef Zhevnenko, D.A., Meshchaninov, F.P., Kozhevnikov, V.S., Shamin, E.S., Telminov, O.A., Gornev, E.S.: Research and development of parameter extraction approaches for memristor models. Micromachines 12(10), 1220 (2021)CrossRef
25.
go back to reference Solovyeva, E., Serdyuk, A.: Behavioral modeling of memristors under harmonic excitation. Micromachines 15(1), 51 (2024)CrossRef Solovyeva, E., Serdyuk, A.: Behavioral modeling of memristors under harmonic excitation. Micromachines 15(1), 51 (2024)CrossRef
26.
go back to reference Ascoli, A., Slesazeck, S., Tetzlaff, R., Mähne, H., Mikolajick, T.: Unfolding the local activity of a memristor. In: 2014 14th International Workshop on Cellular Nanoscale Networks and Their Applications (CNNA), pp. 1–2 (2014) Ascoli, A., Slesazeck, S., Tetzlaff, R., Mähne, H., Mikolajick, T.: Unfolding the local activity of a memristor. In: 2014 14th International Workshop on Cellular Nanoscale Networks and Their Applications (CNNA), pp. 1–2 (2014)
27.
go back to reference Mladenov, V., Kirilov, S.: A simplified model of tantalum oxide based memristor and application in memory crossbars, pp. 1–4 (2021) Mladenov, V., Kirilov, S.: A simplified model of tantalum oxide based memristor and application in memory crossbars, pp. 1–4 (2021)
28.
go back to reference Choi, K.-H., Duraisamy, N., Awais, M.N., Malik Muhammad, N., Kim, H.-C., Jo, J.: Investigation on switching behavior of \(\text{ ZrO}_2\) thin film for memory device applications. Mater. Sci. Semicond. Process. 16(5), 1285–1291 (2013)CrossRef Choi, K.-H., Duraisamy, N., Awais, M.N., Malik Muhammad, N., Kim, H.-C., Jo, J.: Investigation on switching behavior of \(\text{ ZrO}_2\) thin film for memory device applications. Mater. Sci. Semicond. Process. 16(5), 1285–1291 (2013)CrossRef
29.
go back to reference Nauman, M.M., Zulfikre Esa, M., Zaini, J.H., Iqbal, A., Bakar, S.A.: Zirconium oxide based memristors fabrication via electrohydrodynamic printing. In: 2020 IEEE 11th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT), pp. 167–171 (2020) Nauman, M.M., Zulfikre Esa, M., Zaini, J.H., Iqbal, A., Bakar, S.A.: Zirconium oxide based memristors fabrication via electrohydrodynamic printing. In: 2020 IEEE 11th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT), pp. 167–171 (2020)
30.
go back to reference Awais, M.N., Kim, H.C., Doh, Y.H., Choi, K.H.: \(\text{ ZrO}_2\) flexible printed resistive (memristive) switch through electrohydrodynamic printing process. Thin Solid Films 536, 308–312 (2013)CrossRef Awais, M.N., Kim, H.C., Doh, Y.H., Choi, K.H.: \(\text{ ZrO}_2\) flexible printed resistive (memristive) switch through electrohydrodynamic printing process. Thin Solid Films 536, 308–312 (2013)CrossRef
31.
go back to reference Hassan, O., Zakzouk, N., Abdelsalam, A.: Novel photovoltaic empirical mathematical model based on function representation of captured figures from commercial panels datasheet. Mathematics 10(3), 476 (2022)CrossRef Hassan, O., Zakzouk, N., Abdelsalam, A.: Novel photovoltaic empirical mathematical model based on function representation of captured figures from commercial panels datasheet. Mathematics 10(3), 476 (2022)CrossRef
Metadata
Title
Empirical mathematical model based on optimized parameter extraction from captured electrohydrodynamic inkjet memristor device with LTspice model
Authors
Eman Omar
Hesham H. Aly
Ola E. Hassan
Mostafa Fedawy
Publication date
27-09-2024
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 6/2024
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-024-02223-z