Skip to main content
Top

2024 | OriginalPaper | Chapter

Employee Attrition Prediction using Ensemble Methods

Authors : Chayti Saha, Partha Chakraborty, Prince Chandra Talukder, Md. Tofazzal Hosen, Md. Mohi Uddin, Mohammad Abu Yousuf

Published in: Proceedings of Third International Conference on Computing and Communication Networks

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Employee attrition, or employees quitting the firm willingly, is a persistent problem for contemporary businesses. This is a serious issue for businesses, especially when critical personnel like qualified technicians depart for more advantageous positions. Financial losses are incurred to replace the skilled workforce as a result. When employees quit their jobs, they typically carry valuable, unspoken knowledge with them that offers the organization a competitive advantage. A corporation should prioritize reducing personnel attrition with the goal to maintain a persistent competitive advantage over its competitors. This study focuses on this, which will help businesses estimate staff turnover and promote economic growth. This study investigates employee attrition prediction analysis to address the pressing issue of voluntary turnover in contemporary businesses. In this work, four ensemble techniques were used, mainly achieving an accuracy of 88.73% for the MLP, Random Forest, and KNN ensemble. This study emphasizes the value of proactive retention methods for fostering a healthy workplace environment and guaranteeing organizational stability.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Cotton, J.L., Tuttle, J.M.: Employee turnover: a meta-analysis and review with implications for research. Acad. Manag. Rev. 55–70 (1986) Cotton, J.L., Tuttle, J.M.: Employee turnover: a meta-analysis and review with implications for research. Acad. Manag. Rev. 55–70 (1986)
2.
go back to reference Liu, D., Mitchell, T.R., Lee, T.W., Holtom, B.C., Hinkin, T.R.: When employees are out of step with coworkers: How job satisfaction trajectory and dispersion influence individual-and unit-level voluntary turnover. Acad. Manag. J. 1360–1380 (2012) Liu, D., Mitchell, T.R., Lee, T.W., Holtom, B.C., Hinkin, T.R.: When employees are out of step with coworkers: How job satisfaction trajectory and dispersion influence individual-and unit-level voluntary turnover. Acad. Manag. J. 1360–1380 (2012)
3.
go back to reference Heckert, T.M., Farabee, A.M.: Turnover intentions of the faculty at a teaching-focused university. Psychol. Rep. 39–45 (2006) Heckert, T.M., Farabee, A.M.: Turnover intentions of the faculty at a teaching-focused university. Psychol. Rep. 39–45 (2006)
5.
go back to reference Alao, D.O., Adeyemo, A.B.: Analyzing employee attrition using decision tree algorithms (2013) Alao, D.O., Adeyemo, A.B.: Analyzing employee attrition using decision tree algorithms (2013)
7.
go back to reference Alduay, J., Sarah, S., Rajpoot, K.: Predicting employee attrition using machine learning. In: 2018 International Conference on Innovations in Information Technology (IIT). IEEE (2018) Alduay, J., Sarah, S., Rajpoot, K.: Predicting employee attrition using machine learning. In: 2018 International Conference on Innovations in Information Technology (IIT). IEEE (2018)
8.
go back to reference Reddy, S.S., et al.: Prediction of employee attrition using datamining. In: 2018 IEEE International Conference on System, Computation, Automation and Networking (ICSCA), pp. 1–8 (2018) Reddy, S.S., et al.: Prediction of employee attrition using datamining. In: 2018 IEEE International Conference on System, Computation, Automation and Networking (ICSCA), pp. 1–8 (2018)
9.
go back to reference Srivastava, D.K., Tiwari, P.K.: An analysis report to reduce the employee attrition within organizations. J. Discrete Math. Sci. Cryptogr. 23, 337–348 (2020) Srivastava, D.K., Tiwari, P.K.: An analysis report to reduce the employee attrition within organizations. J. Discrete Math. Sci. Cryptogr. 23, 337–348 (2020)
10.
go back to reference Fallucchi, F., Coladangelo, M., Giuliano, R., William De Luca, E.: Predicting employee attrition using machine learning techniques. Computers 9(4), 86 (2020) Fallucchi, F., Coladangelo, M., Giuliano, R., William De Luca, E.: Predicting employee attrition using machine learning techniques. Computers 9(4), 86 (2020)
11.
go back to reference Setiawan, I., et al.: HR analytics: employee attrition analysis using logistic regression. In: IOP Conference Series: Materials Science and Engineering, vol. 830 (2020) Setiawan, I., et al.: HR analytics: employee attrition analysis using logistic regression. In: IOP Conference Series: Materials Science and Engineering, vol. 830 (2020)
12.
go back to reference Raja, D.V.A.J., Kumar, R.A.R.: A study to reduce employee attrition in IT industries. Int. J. Mark. Hum. Resour. Manag. (IJMHRM) 7(1), 1–14 (2016) Raja, D.V.A.J., Kumar, R.A.R.: A study to reduce employee attrition in IT industries. Int. J. Mark. Hum. Resour. Manag. (IJMHRM) 7(1), 1–14 (2016)
13.
go back to reference Bindra, H., Sehgal, K., Jain, R.: Optimisation of C5.0 using association rules and prediction of employee attrition. In: International Conference on Innovative Computing and Communications. Lecture Notes in Networks and Systems, Singapore (2019) Bindra, H., Sehgal, K., Jain, R.: Optimisation of C5.0 using association rules and prediction of employee attrition. In: International Conference on Innovative Computing and Communications. Lecture Notes in Networks and Systems, Singapore (2019)
14.
go back to reference Mishra, S.N., Lama, D.R.: A decision making model for human resource management in organizations using data mining and predictive analytics. Int. J. Comput. Sci. Inform. Secur. 14(5), 217 (2016) Mishra, S.N., Lama, D.R.: A decision making model for human resource management in organizations using data mining and predictive analytics. Int. J. Comput. Sci. Inform. Secur. 14(5), 217 (2016)
15.
go back to reference Nagadevara, V.: Early prediction of employee attrition in software companies-application of data mining techniques. Res. Pract. Hum. Resour. Manag. 16, 2020–2032 (2008) Nagadevara, V.: Early prediction of employee attrition in software companies-application of data mining techniques. Res. Pract. Hum. Resour. Manag. 16, 2020–2032 (2008)
16.
go back to reference Rombaut, E., Guerry, M.A.: Predicting voluntary turnover through Human Resources database analysis. Manag. Res. Rev. 41, 96–112 (2018)CrossRef Rombaut, E., Guerry, M.A.: Predicting voluntary turnover through Human Resources database analysis. Manag. Res. Rev. 41, 96–112 (2018)CrossRef
17.
go back to reference Usha, P., Balaji, N.: Analysing employee attrition using machine learning. Karpagam J. Comput. Sci. 13, 277–282 (2019) Usha, P., Balaji, N.: Analysing employee attrition using machine learning. Karpagam J. Comput. Sci. 13, 277–282 (2019)
18.
go back to reference Ponnuru, S., Merugumala, G., Padigala, S., Vanga, R., Kantapalli, B.: Employee attrition prediction using logistic regression. Int. J. Res. Appl. Sci. Eng. Technol. 8, 2871–2875 (2020)CrossRef Ponnuru, S., Merugumala, G., Padigala, S., Vanga, R., Kantapalli, B.: Employee attrition prediction using logistic regression. Int. J. Res. Appl. Sci. Eng. Technol. 8, 2871–2875 (2020)CrossRef
19.
go back to reference Garigipati, R.K., Raghu, K., Saikumar, K.: Detection and identification of employee attrition using a machine learning algorithm. In: Handbook of Research on Technologies and Systems for e-Collaboration During Global Crises, pp. 120–131. IGI Global (2022) Garigipati, R.K., Raghu, K., Saikumar, K.: Detection and identification of employee attrition using a machine learning algorithm. In: Handbook of Research on Technologies and Systems for e-Collaboration During Global Crises, pp. 120–131. IGI Global (2022)
20.
go back to reference Darapaneni, N., et al.: A detailed analysis of AI models for predicting employee attrition risk. In: 2022 IEEE 10th Region 10 Humanitarian Technology Conference (R10-HTC). IEEE (2022) Darapaneni, N., et al.: A detailed analysis of AI models for predicting employee attrition risk. In: 2022 IEEE 10th Region 10 Humanitarian Technology Conference (R10-HTC). IEEE (2022)
Metadata
Title
Employee Attrition Prediction using Ensemble Methods
Authors
Chayti Saha
Partha Chakraborty
Prince Chandra Talukder
Md. Tofazzal Hosen
Md. Mohi Uddin
Mohammad Abu Yousuf
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-0892-5_38