Skip to main content
Top

2025 | OriginalPaper | Chapter

Employing Clustering Techniques and Association Rules for Client Segmentation and Attribute Dependency Mining in the Domain of Car Insurance

Authors : Delia Mitrea, Paulina Mitrea, Erik Barna

Published in: World Conference of AI-Powered Innovation and Inventive Design

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The chapter delves into the use of clustering techniques and association rules for enhancing client segmentation and attribute dependency analysis in car insurance. It introduces various clustering methods such as k-means, k-prototype, and deep learning-based clustering, comparing their performance with classical techniques. The methodology includes data extraction, clustering application, relevant feature selection, and data visualization. The study highlights the superiority of deep learning techniques and provides valuable insights into client characteristics and policy recommendations. The experimental results and graphical representations offer a detailed analysis of client segmentation based on financial data and life stage, making this chapter a valuable resource for insurance professionals and data scientists.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Jain, M., Verma, C.: Adapting k-means for Clustering in Big Data. International Journal of Computer Applications (0975 – 8887) 101(1), 119–24 (2014) Jain, M., Verma, C.: Adapting k-means for Clustering in Big Data. International Journal of Computer Applications (0975 – 8887) 101(1), 119–24 (2014)
4.
go back to reference Duda, R., Hart, P., Stork, D.: Pattern Classification. Wiley Interscience (2003) Duda, R., Hart, P., Stork, D.: Pattern Classification. Wiley Interscience (2003)
5.
go back to reference Tudor, I.: Association rule mining as a data mining technique. BULETINUL Universităţii Petrol – Gaze din Ploieşti, Vol. LX No. 1/2008, Seria Matematică - Informatică – Fizică Tudor, I.: Association rule mining as a data mining technique. BULETINUL Universităţii Petrol – Gaze din Ploieşti, Vol. LX No. 1/2008, Seria Matematică - Informatică – Fizică
6.
go back to reference AitMlouk, A., Agouti, T., Gharnati, F.: Mining and prioritization of association rules for big data: multicriteria decision analysis approach. Journal of Big Data 4(42) (2017) AitMlouk, A., Agouti, T., Gharnati, F.: Mining and prioritization of association rules for big data: multicriteria decision analysis approach. Journal of Big Data 4(42) (2017)
8.
go back to reference Deep Learning Tutorial: Release 0.1, LISA lab, University of Montreal, Copyright Theano Development Team (2015) Deep Learning Tutorial: Release 0.1, LISA lab, University of Montreal, Copyright Theano Development Team (2015)
9.
go back to reference Aljalbout, E., Golkov, V., Siddiqui, Y., Strobel, M., Cremers, D.: Clustering with Deep Learning: Taxonomy and New Methods, arXiv:1801.07648v2 (2018) Aljalbout, E., Golkov, V., Siddiqui, Y., Strobel, M., Cremers, D.: Clustering with Deep Learning: Taxonomy and New Methods, arXiv:​1801.​07648v2 (2018)
10.
go back to reference Hall, M.: Benchmarking attribute selection techniques for discrete class data mining. IEEE Trans. Knowl. Data Eng. 15(3), 1–16 (2003) Hall, M.: Benchmarking attribute selection techniques for discrete class data mining. IEEE Trans. Knowl. Data Eng. 15(3), 1–16 (2003)
11.
go back to reference Viveros, M., Nearhos, J., Rothman, M.: Applying data mining techniques to a health insurance information system. VLDB'96, Proceedings of 22th International Conference on Very Large Data Bases, September 3–6. Mumbai (Bombay), India (1996) Viveros, M., Nearhos, J., Rothman, M.: Applying data mining techniques to a health insurance information system. VLDB'96, Proceedings of 22th International Conference on Very Large Data Bases, September 3–6. Mumbai (Bombay), India (1996)
12.
go back to reference Tang, G., Tian, R., Wu, B.: An overview of clustering methods in the financial world. Proceedings of the 2022 7th International Conference on Financial Innovation and Economic Development (ICFIED 2022); Advances in Economics, Business and Management Research, vol. 211, pp. 524–529 (2022) Tang, G., Tian, R., Wu, B.: An overview of clustering methods in the financial world. Proceedings of the 2022 7th International Conference on Financial Innovation and Economic Development (ICFIED 2022); Advances in Economics, Business and Management Research, vol. 211, pp. 524–529 (2022)
13.
go back to reference Jamotton, C., Hainaut, D., Hammes, T.: Insurance analytics with clustering techniques. LIAM Discussion Paper, ISBA 02, 1–27 (2023) Jamotton, C., Hainaut, D., Hammes, T.: Insurance analytics with clustering techniques. LIAM Discussion Paper, ISBA 02, 1–27 (2023)
14.
go back to reference Wang, X., Keogh, E.: A clustering analysis for target group identification by locality in motor insurance industry. Chapter in Soft Computing Applications in Business, pp. 113–127 (2008) Wang, X., Keogh, E.: A clustering analysis for target group identification by locality in motor insurance industry. Chapter in Soft Computing Applications in Business, pp. 113–127 (2008)
15.
go back to reference Yin, S., Gan, G., Valdez, E., Vadiveloo, J.: Applications of clustering with mixed type data in life insurance. Risks 9(47) (2021) Yin, S., Gan, G., Valdez, E., Vadiveloo, J.: Applications of clustering with mixed type data in life insurance. Risks 9(47) (2021)
16.
go back to reference Ynuzaj, Y., Bequiri, E.: Determining the optimal number of clusters using silhouette score as a data mining technique. Int. J. Online and Biomed. Eng. 19(4), 174–182 (2023) Ynuzaj, Y., Bequiri, E.: Determining the optimal number of clusters using silhouette score as a data mining technique. Int. J. Online and Biomed. Eng. 19(4), 174–182 (2023)
17.
go back to reference Rahmakrishnan, R., Gehrke, J.: Database Management Systems, 3rd edition. McGraw Hill Higher Education (2007) Rahmakrishnan, R., Gehrke, J.: Database Management Systems, 3rd edition. McGraw Hill Higher Education (2007)
Metadata
Title
Employing Clustering Techniques and Association Rules for Client Segmentation and Attribute Dependency Mining in the Domain of Car Insurance
Authors
Delia Mitrea
Paulina Mitrea
Erik Barna
Copyright Year
2025
DOI
https://doi.org/10.1007/978-3-031-75923-9_14

Premium Partner