Skip to main content
Top

2025 | OriginalPaper | Chapter

Empowering Visual Navigation: A Deep-Learning Solution for Enhanced Accessibility and Safety Among the Visually Impaired

Authors : Seyed Shahabadin Nasabeh, Santiago Meliá, Barbara Leporini, Diana Gadzhimusieva

Published in: Web Information Systems Engineering – WISE 2024

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Individuals with visual impairments face significant challenges navigating environments, especially with tasks such as object identification and traversing unfamiliar spaces. Often, their needs are inadequately addressed, leading to applications that do not meet their specific requirements. Traditional object detection models frequently lack this demographic's accuracy, speed, and efficiency. However, recent Internet of Things (IoT) advancements offer promising solutions, providing real-time guidance and alerts about potential hazards through IoT-enabled navigation apps and smart city infrastructure. This paper presents an extension of our MoSIoT framework, incorporating the YOLOv8 convolutional neural network for precise object detection and a specialized decision layer to improve environmental understanding. Additionally, advanced distance measurement techniques are incorporated to provide crucial information on object proximity. Our model demonstrates increased efficiency and adaptability across diverse environments using transfer learning and robust regularization techniques. Systematic evaluation indicates significant improvements in object detection accuracy, measured by mean Average Precision at 50% Intersection over Union (mAP50) from 0.44411 to 0.51809 and mAP50-95 from 0.24936 to 0.29586 for visually impaired individuals, ensuring reliable real-time feedback for safe navigation. These enhancements significantly improve the MoSIoT framework, thereby greatly enhancing accessibility, safety, independence, and mobility for users with visual impairments.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
10.
go back to reference Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016) Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)
11.
15.
go back to reference Bézivin, J.: In search of a basic principle for model-driven engineering. Novatica J. 5, 21–24 (2004) Bézivin, J.: In search of a basic principle for model-driven engineering. Novatica J. 5, 21–24 (2004)
21.
go back to reference Vaidya, S., Shah, N., Shah, N., Shankarmani, R.: Real-time object detection for visually challenged people. In: Proceedings of the International Conference on Intelligent Computing and Control Systems (ICICCS 2020), pp. 311–315. IEEE (2020) Vaidya, S., Shah, N., Shah, N., Shankarmani, R.: Real-time object detection for visually challenged people. In: Proceedings of the International Conference on Intelligent Computing and Control Systems (ICICCS 2020), pp. 311–315. IEEE (2020)
26.
go back to reference Kalra, D., Beale, T., Heard, S.: The openEHR foundation. Stud. Health Technol. Inform. 115, 153–173 (2005) Kalra, D., Beale, T., Heard, S.: The openEHR foundation. Stud. Health Technol. Inform. 115, 153–173 (2005)
Metadata
Title
Empowering Visual Navigation: A Deep-Learning Solution for Enhanced Accessibility and Safety Among the Visually Impaired
Authors
Seyed Shahabadin Nasabeh
Santiago Meliá
Barbara Leporini
Diana Gadzhimusieva
Copyright Year
2025
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-96-0573-6_25

Premium Partner