Skip to main content
Top

2020 | OriginalPaper | Chapter

5. Enabling Materials By Dimensionality: From 0D to 3D Carbon-Based Nanostructures

Author : Simone Taioli

Published in: Theoretical Chemistry for Advanced Nanomaterials

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter is aimed at analysing the influence that dimensional scaling exerts on the electronic, optical, transport and mechanical properties of materials using both experiments and computer simulations. In particular, to climb the “dimensional ladder” from 0D to 3D, we analyse a specific set of all-carbon allotropes, making the best use of the versatility of this element to combine in different bonding schemes, such as sp 2 and sp 3, resulting in architectures as diverse as fullerenes, nanotubes, graphene, and diamond. Owing to the central role of carbon in future emerging technologies, we will discuss a variety of physical observables to show how novel characteristics emerge by increasing or decreasing the dimensional space in which particles can move, ranging from the charge transport in semiconductor (diamond) and semimetallic (graphite) samples to the stress-strain characteristics of several 2D carbon-based materials, to the gas absorption and selectivity in pillared structures and to the thermal diffusion in foams. In this respect, our analysis uses ab initio, multiscale and Monte Carlo (MC) methods to deal with the complexity of physical phenomena at different scales. In particular, the response of the systems to external electromagnetic fields is described using the effective dielectric model of the plasma losses within a Monte Carlo framework, while pressure fields are dealt with the ab initio simulation of the stress-strain relationships. Moreover, in this chapter we present recent theoretical and experimental investigations aimed at producing graphene and other carbon-based materials using supersonic molecular beam epitaxy on inorganic surfaces, starting from fullerene precursors. We mostly focus on the computational techniques used to model various stages of the process on multiple length and time scales, from the breaking of the fullerene cage upon impact to the rearrangement of atoms on the metal surface used to catalyse graphene formation. The insights obtained by our computational modelling of the impact and of the following chemical-physical processes underlying the materials growth have been successfully used to set up an experimental procedure that ended up in the production of graphene flakes by C60 impact on copper surfaces.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference G. Gallavotti, Statistical Mechanics. Texts and Monographs in Physics. (Springer, Berlin, 1999) G. Gallavotti, Statistical Mechanics. Texts and Monographs in Physics. (Springer, Berlin, 1999)
3.
go back to reference C.G. Smith, Low-dimensional quantum devices. Rep. Prog. Phys. 59, 235–282 (1996)CrossRef C.G. Smith, Low-dimensional quantum devices. Rep. Prog. Phys. 59, 235–282 (1996)CrossRef
4.
go back to reference A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)CrossRef A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)CrossRef
5.
go back to reference K.S. Novoselov, A. Mishchenko, A. Carvalho, A.H. Castro Neto, 2D materials and van der Waals heterostructures. Science 353, 461–472 (2016)CrossRef K.S. Novoselov, A. Mishchenko, A. Carvalho, A.H. Castro Neto, 2D materials and van der Waals heterostructures. Science 353, 461–472 (2016)CrossRef
6.
7.
go back to reference T. Morresi, M. Timpel, A. Pedrielli, G. Garberoglio, R. Tatti, R. Verucchi, L. Pasquali, N. Pugno, M.V. Nardi, S. Taioli, A novel combined experimental and multiscale theoretical approach to unravel the structure of SiC/SiOx core/shell nanowires for their optimal design. Nanoscale 10, 13449–13461 (2018)PubMedCrossRef T. Morresi, M. Timpel, A. Pedrielli, G. Garberoglio, R. Tatti, R. Verucchi, L. Pasquali, N. Pugno, M.V. Nardi, S. Taioli, A novel combined experimental and multiscale theoretical approach to unravel the structure of SiC/SiOx core/shell nanowires for their optimal design. Nanoscale 10, 13449–13461 (2018)PubMedCrossRef
8.
go back to reference S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)CrossRef S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)CrossRef
9.
go back to reference X. Wang, Q. Li, J. Xie, Z. Jin, J. Wang, Y. Li, K. Jiang, S. Fan, Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates. Nano Lett. 9, 3137–3141 (2009)PubMedCrossRef X. Wang, Q. Li, J. Xie, Z. Jin, J. Wang, Y. Li, K. Jiang, S. Fan, Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates. Nano Lett. 9, 3137–3141 (2009)PubMedCrossRef
10.
go back to reference C.D. Spataru, S. Ismail-Beigi, L.X. Benedict, S.G. Louie, Excitonic effects and optical spectra of single-walled carbon nanotubes. Phys. Rev. Lett. 92, 077402 (2004)PubMedCrossRef C.D. Spataru, S. Ismail-Beigi, L.X. Benedict, S.G. Louie, Excitonic effects and optical spectra of single-walled carbon nanotubes. Phys. Rev. Lett. 92, 077402 (2004)PubMedCrossRef
11.
go back to reference P. Umari, O. Petrenko, S. Taioli, M.M. De Souza, Communication: electronic band gaps of semiconducting zig-zag carbon nanotubes from many-body perturbation theory calculations. J. Chem. Phys. 136, 181101 (2012)PubMedCrossRef P. Umari, O. Petrenko, S. Taioli, M.M. De Souza, Communication: electronic band gaps of semiconducting zig-zag carbon nanotubes from many-body perturbation theory calculations. J. Chem. Phys. 136, 181101 (2012)PubMedCrossRef
12.
go back to reference S. Taioli, P. Umari, M.M. De Souza, Electronic properties of extended graphene nanomaterials from GW calculations. Phys. Status Solidi (B) 246, 2572–2576 (2009)CrossRef S. Taioli, P. Umari, M.M. De Souza, Electronic properties of extended graphene nanomaterials from GW calculations. Phys. Status Solidi (B) 246, 2572–2576 (2009)CrossRef
13.
14.
go back to reference W.G. Van der Wiel, S. De Franceschi, J.M. Elzerman, T. Fujisawa, S. Tarucha, L.P. Kouwenhoven, Electron transport through double quantum dots. Rev. Mod. Phys. 75, 1–22 (2002)CrossRef W.G. Van der Wiel, S. De Franceschi, J.M. Elzerman, T. Fujisawa, S. Tarucha, L.P. Kouwenhoven, Electron transport through double quantum dots. Rev. Mod. Phys. 75, 1–22 (2002)CrossRef
15.
go back to reference A. Imamoglu, Are quantum dots useful for quantum computation? Phys. E Low Dimens. Syst. Nanostruct. 16, 47–50 (2003)CrossRef A. Imamoglu, Are quantum dots useful for quantum computation? Phys. E Low Dimens. Syst. Nanostruct. 16, 47–50 (2003)CrossRef
16.
go back to reference L. Van Hove, The occurrence of singularities in the elastic frequency distribution of a crystal. Phys. Rev. 89, 1189–1193 (1953)CrossRef L. Van Hove, The occurrence of singularities in the elastic frequency distribution of a crystal. Phys. Rev. 89, 1189–1193 (1953)CrossRef
17.
go back to reference F. Bassani, G. Pastori Parravicini, Electronic States and Optical Transitions in Solids (Pergamon Press, Oxford/New York, 1975) F. Bassani, G. Pastori Parravicini, Electronic States and Optical Transitions in Solids (Pergamon Press, Oxford/New York, 1975)
18.
go back to reference M. Azzolini, T. Morresi, G. Garberoglio, L. Calliari, N.M. Pugno, S. Taioli, M. Dapor, Monte Carlo simulations of measured electron energy-loss spectra of diamond and graphite: role of dielectric-response models. Carbon 118, 299–309 (2017)CrossRef M. Azzolini, T. Morresi, G. Garberoglio, L. Calliari, N.M. Pugno, S. Taioli, M. Dapor, Monte Carlo simulations of measured electron energy-loss spectra of diamond and graphite: role of dielectric-response models. Carbon 118, 299–309 (2017)CrossRef
19.
go back to reference P. Cudazzo, M. Gatti, A. Rubio, Interplay between structure and electronic properties of layered transition-metal dichalcogenides: comparing the loss function of 1T and 2H polymorphs. Phys. Rev. B 86, 075121 (2012)CrossRef P. Cudazzo, M. Gatti, A. Rubio, Interplay between structure and electronic properties of layered transition-metal dichalcogenides: comparing the loss function of 1T and 2H polymorphs. Phys. Rev. B 86, 075121 (2012)CrossRef
20.
go back to reference C.L. Kane, E.J. Mele, Quantum spin hall effect in graphene. Phys. Rev. Lett. 95, 22680 (2005) C.L. Kane, E.J. Mele, Quantum spin hall effect in graphene. Phys. Rev. Lett. 95, 22680 (2005)
21.
go back to reference H. Gao, Application of fracture mechanics concepts to hierarchical biomechanics of bone and bone-like materials. Int. J. Fract. 138, 101–137 (2006)CrossRef H. Gao, Application of fracture mechanics concepts to hierarchical biomechanics of bone and bone-like materials. Int. J. Fract. 138, 101–137 (2006)CrossRef
22.
go back to reference H. Yao, H. Gao, Multi-scale cohesive laws in hierarchical materials. Int. J. Solids Struct. 44, 8177–8193 (2007)CrossRef H. Yao, H. Gao, Multi-scale cohesive laws in hierarchical materials. Int. J. Solids Struct. 44, 8177–8193 (2007)CrossRef
23.
go back to reference M.J. Buehler, S. Keten, T. Ackbarow, Theoretical and computational hierarchical nanomechanics of protein materials: deformation and fracture. Prog. Mater. Sci. 53, 1101–1241 (2008)CrossRef M.J. Buehler, S. Keten, T. Ackbarow, Theoretical and computational hierarchical nanomechanics of protein materials: deformation and fracture. Prog. Mater. Sci. 53, 1101–1241 (2008)CrossRef
24.
go back to reference R. Puxkandl, I. Zizak, O. Paris, J. Keckes, W. Tesch, S. Bernstorff, P. Purslow, P. Fratzl, Viscoelastic properties of collagen: synchrotron radiation investigations and structural model. Philos. Trans. R. Soc. Lond. B 357, 191–197 (2001)CrossRef R. Puxkandl, I. Zizak, O. Paris, J. Keckes, W. Tesch, S. Bernstorff, P. Purslow, P. Fratzl, Viscoelastic properties of collagen: synchrotron radiation investigations and structural model. Philos. Trans. R. Soc. Lond. B 357, 191–197 (2001)CrossRef
25.
go back to reference M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, Science of fullerenes and carbon nanotubes (Academic Press, San Diego, 1996) M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, Science of fullerenes and carbon nanotubes (Academic Press, San Diego, 1996)
26.
go back to reference D.E.H. Jones, Hollow molecules. New Sci. 32, 245 (1966) D.E.H. Jones, Hollow molecules. New Sci. 32, 245 (1966)
27.
go back to reference H.W. Kroto, J.R. Health, S.C. O’Brien, R.F. Curl, R.E. Smalley, C60: Buckminsterfullerene. Nature 318, 162–163 (1985)CrossRef H.W. Kroto, J.R. Health, S.C. O’Brien, R.F. Curl, R.E. Smalley, C60: Buckminsterfullerene. Nature 318, 162–163 (1985)CrossRef
28.
go back to reference A. Lassesson, N. Walsh, F. Martinez, A. Herlert, G. Marx, L. Schweikhard, Formation of fullerene dianions in a Penning trap. Eur. Phys. J. D At. Mol. Opt. Plasma Phys. 34, 73–77 (2005) A. Lassesson, N. Walsh, F. Martinez, A. Herlert, G. Marx, L. Schweikhard, Formation of fullerene dianions in a Penning trap. Eur. Phys. J. D At. Mol. Opt. Plasma Phys. 34, 73–77 (2005)
29.
go back to reference D. Tomànek, M.A. Schluter, Growth regimes of carbon clusters. Phys. Rev. Lett. 67, 2331–2334 (1991)PubMedCrossRef D. Tomànek, M.A. Schluter, Growth regimes of carbon clusters. Phys. Rev. Lett. 67, 2331–2334 (1991)PubMedCrossRef
30.
go back to reference C.J. Brabec, E.B. Anderson, B.N. Davidson, S.A. Kajihara, Q.-M. Zhang, J. Bernholc, D. Tomànek, Precursors to C60 fullerene formation. Phys. Rev. B 46, 7326–7328 (1992)CrossRef C.J. Brabec, E.B. Anderson, B.N. Davidson, S.A. Kajihara, Q.-M. Zhang, J. Bernholc, D. Tomànek, Precursors to C60 fullerene formation. Phys. Rev. B 46, 7326–7328 (1992)CrossRef
31.
go back to reference Z. Yufeng, K. Yong-Hyun, A.C. Dillon, M.J. Heben, S.B. Zhang, Hydrogen storage in novel organometallic buckyballs. Phys. Rev. Lett. 94, 155504 (2005)CrossRef Z. Yufeng, K. Yong-Hyun, A.C. Dillon, M.J. Heben, S.B. Zhang, Hydrogen storage in novel organometallic buckyballs. Phys. Rev. Lett. 94, 155504 (2005)CrossRef
32.
go back to reference C.E. Housecroft, A.G. Sharpe, Chapter 14: the group 14 elements, in Inorganic Chemistry, 3rd edn. (Pearson, London, 2008) C.E. Housecroft, A.G. Sharpe, Chapter 14: the group 14 elements, in Inorganic Chemistry, 3rd edn. (Pearson, London, 2008)
33.
go back to reference N.S. Sariciftci et al., Semiconducting polymer-buckminsterfullerene heterojunctions: diodes, photodiodes, and photovoltaic cells. Appl. Phys. Lett. 62, 585–587 (1993)CrossRef N.S. Sariciftci et al., Semiconducting polymer-buckminsterfullerene heterojunctions: diodes, photodiodes, and photovoltaic cells. Appl. Phys. Lett. 62, 585–587 (1993)CrossRef
34.
go back to reference F. Tran, P. Blaha, Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102, 226401 (2009)PubMedCrossRef F. Tran, P. Blaha, Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102, 226401 (2009)PubMedCrossRef
35.
go back to reference S. Jalali-Asadabadi, Electronic structure of crystalline buckyballs: fcc-C60. J. Electron. Mater. 45, 339–348 (2016)CrossRef S. Jalali-Asadabadi, Electronic structure of crystalline buckyballs: fcc-C60. J. Electron. Mater. 45, 339–348 (2016)CrossRef
36.
go back to reference E.L. Shirley, S.G. Louie, Electron excitations in solid C60: energy gap, band dispersions, and effects of orientational disorder. Phys. Rev. Lett. 71, 133–136 (1993)PubMedCrossRef E.L. Shirley, S.G. Louie, Electron excitations in solid C60: energy gap, band dispersions, and effects of orientational disorder. Phys. Rev. Lett. 71, 133–136 (1993)PubMedCrossRef
37.
go back to reference K.H. Michel, J.R.D. Copley, D.A. Neumann, Microscopic theory of orientational disorder and the orientational phase transition in solid C60. Phys. Rev. Lett. 68, 2929–2932 (1992)PubMedCrossRef K.H. Michel, J.R.D. Copley, D.A. Neumann, Microscopic theory of orientational disorder and the orientational phase transition in solid C60. Phys. Rev. Lett. 68, 2929–2932 (1992)PubMedCrossRef
38.
go back to reference S. Saito, A. Oshiyama, Cohesive mechanism and energy bands of solid C60. Phys. Rev. Lett. 66, 2637–2640 (1991)PubMedCrossRef S. Saito, A. Oshiyama, Cohesive mechanism and energy bands of solid C60. Phys. Rev. Lett. 66, 2637–2640 (1991)PubMedCrossRef
39.
go back to reference M.S. Golden, M. Knupfer, J. Fink, J.F. Armbruster, T.R. Cummins, H.A. Romberg, M. Roth, M. Sing, M. Schmidt, E. Sohmen, The electronic structure of fullerenes and fullerene compounds from high-energy spectroscopy. J. Phys. Condens. Matter 7, 8219 (1995)CrossRef M.S. Golden, M. Knupfer, J. Fink, J.F. Armbruster, T.R. Cummins, H.A. Romberg, M. Roth, M. Sing, M. Schmidt, E. Sohmen, The electronic structure of fullerenes and fullerene compounds from high-energy spectroscopy. J. Phys. Condens. Matter 7, 8219 (1995)CrossRef
40.
go back to reference J.R. Pinzón, A. Villalta-Cerdas, L. Echegoyen, Fullerenes, carbon nanotubes, and graphene for molecular electronics, in Unimolecular and Supramolecular Electronics, vol. 312 (Springer, Berlin/Heidelberg, 2012), pp. 127–74CrossRef J.R. Pinzón, A. Villalta-Cerdas, L. Echegoyen, Fullerenes, carbon nanotubes, and graphene for molecular electronics, in Unimolecular and Supramolecular Electronics, vol. 312 (Springer, Berlin/Heidelberg, 2012), pp. 127–74CrossRef
41.
go back to reference O. Gunnarson, Alkali-Doped Fullerides Narrow-Band Solids with Unusual Properties (World Scientific, Singapore, 2004)CrossRef O. Gunnarson, Alkali-Doped Fullerides Narrow-Band Solids with Unusual Properties (World Scientific, Singapore, 2004)CrossRef
42.
go back to reference R. Verucchi, L. Aversa, M.V. Nardi, S. Taioli, S. a Beccara, D. Alfè, L. Nasi, F. Rossi, G. Salviati, S. Iannotta, Epitaxy of nanocrystalline silicon carbide on Si(111) at room temperature. J. Am. Chem. Soc. Commun. 134, 17400–17403 (2012)PubMedCrossRef R. Verucchi, L. Aversa, M.V. Nardi, S. Taioli, S. a Beccara, D. Alfè, L. Nasi, F. Rossi, G. Salviati, S. Iannotta, Epitaxy of nanocrystalline silicon carbide on Si(111) at room temperature. J. Am. Chem. Soc. Commun. 134, 17400–17403 (2012)PubMedCrossRef
43.
go back to reference S. Taioli, G. Garberoglio, S. Simonucci, S. a Beccara, L. Aversa, M. Nardi, R. Verucchi, S. Iannotta, M. Dapor, D. Alfè, Non-adiabatic ab initio molecular dynamics of supersonic beam epitaxy of silicon carbide at room temperature. J. Chem. Phys. 138, 044701 (2013)PubMedCrossRef S. Taioli, G. Garberoglio, S. Simonucci, S. a Beccara, L. Aversa, M. Nardi, R. Verucchi, S. Iannotta, M. Dapor, D. Alfè, Non-adiabatic ab initio molecular dynamics of supersonic beam epitaxy of silicon carbide at room temperature. J. Chem. Phys. 138, 044701 (2013)PubMedCrossRef
44.
go back to reference L. Aversa, S. Taioli, M.V. Nardi, R. Tatti, R. Verucchi, S. Iannotta, The interaction of C60 on Si(111) 7 × 7 studied by supersonic molecular beams: interplay between precursor kinetic energy and substrate temperature in surface activated processes. Front. Mater. 2, 46 (2015)CrossRef L. Aversa, S. Taioli, M.V. Nardi, R. Tatti, R. Verucchi, S. Iannotta, The interaction of C60 on Si(111) 7 × 7 studied by supersonic molecular beams: interplay between precursor kinetic energy and substrate temperature in surface activated processes. Front. Mater. 2, 46 (2015)CrossRef
45.
go back to reference S. Taioli, M. Dapor, N.M. Pugno, New frontiers in multiscale modelling of advanced materials. Front. Mater. 2, 71 (2015) S. Taioli, M. Dapor, N.M. Pugno, New frontiers in multiscale modelling of advanced materials. Front. Mater. 2, 71 (2015)
46.
go back to reference R. Tatti, L. Aversa, R. Verucchi, E. Cavaliere, G. Garberoglio, N.M. Pugno, G. Speranza, S. Taioli, Synthesis of single layer graphene on Cu(111) by C60 supersonic molecular beam epitaxy. RSC Adv. 6, 37982–37993 (2016)CrossRef R. Tatti, L. Aversa, R. Verucchi, E. Cavaliere, G. Garberoglio, N.M. Pugno, G. Speranza, S. Taioli, Synthesis of single layer graphene on Cu(111) by C60 supersonic molecular beam epitaxy. RSC Adv. 6, 37982–37993 (2016)CrossRef
47.
go back to reference D. Haberer, D. Vyalikh, S. Taioli, B. Dora, M. Farjam, J. Fink, D. Marchenko, T. Pichler, K. Ziegler, S. Simonucci et al., Tunable band gap in hydrogenated quasi-free-standing graphene. Nano Lett 10, 3360–3366 (2010)PubMedCrossRef D. Haberer, D. Vyalikh, S. Taioli, B. Dora, M. Farjam, J. Fink, D. Marchenko, T. Pichler, K. Ziegler, S. Simonucci et al., Tunable band gap in hydrogenated quasi-free-standing graphene. Nano Lett 10, 3360–3366 (2010)PubMedCrossRef
48.
go back to reference D. Haberer, L. Petaccia, M. Farjam, S. Taioli, S. Jafari, A. Nefedov, W. Zhang, L. Calliari, G. Scarduelli, B. Dora et al., Direct observation of a dispersionless impurity band in hydrogenated graphene. Phys. Rev. B 83, 165433 (2011)CrossRef D. Haberer, L. Petaccia, M. Farjam, S. Taioli, S. Jafari, A. Nefedov, W. Zhang, L. Calliari, G. Scarduelli, B. Dora et al., Direct observation of a dispersionless impurity band in hydrogenated graphene. Phys. Rev. B 83, 165433 (2011)CrossRef
49.
go back to reference S. Taioli, A. Paris, L. Calliari, Characterization of pristine and functionalized graphene on metal surfaces by electron spectroscopy, in Graphene Science Handbook: Size-Dependent Properties, vol. 5 (CRC Press/Taylor & Francis Group, Boca Raton, 2016), pp. 269–285CrossRef S. Taioli, A. Paris, L. Calliari, Characterization of pristine and functionalized graphene on metal surfaces by electron spectroscopy, in Graphene Science Handbook: Size-Dependent Properties, vol. 5 (CRC Press/Taylor & Francis Group, Boca Raton, 2016), pp. 269–285CrossRef
50.
go back to reference S. Taioli, Computational study of graphene growth on copper by first-principles and kinetic Monte Carlo calculations. J. Mol. Mod. 20, 1–13 (2014)CrossRef S. Taioli, Computational study of graphene growth on copper by first-principles and kinetic Monte Carlo calculations. J. Mol. Mod. 20, 1–13 (2014)CrossRef
51.
go back to reference G. Xu, X.-Q. Shi, R.Q. Zhang, W.W. Pai, H.T. Jeng, M.A. Van Hove, Detailed low-energy electron diffraction analysis of the (4 × 4) surface structure of C60 on Cu(111): seven-atom-vacancy reconstruction. Phys. Rev. B 86, 075419 (2012)CrossRef G. Xu, X.-Q. Shi, R.Q. Zhang, W.W. Pai, H.T. Jeng, M.A. Van Hove, Detailed low-energy electron diffraction analysis of the (4 × 4) surface structure of C60 on Cu(111): seven-atom-vacancy reconstruction. Phys. Rev. B 86, 075419 (2012)CrossRef
52.
go back to reference G. Galli, F. Mauri, Large scale quantum simulations: C60 impacts on a semiconducting surface. Phys. Rev. Lett. 73, 3471–3474 (1994)PubMedCrossRef G. Galli, F. Mauri, Large scale quantum simulations: C60 impacts on a semiconducting surface. Phys. Rev. Lett. 73, 3471–3474 (1994)PubMedCrossRef
53.
go back to reference X. Hu, K. Albe, R.J. Averback, Molecular-dynamics simulations of energetic C60 impacts on (2 × 1)–(100) silicon. Appl. Phys. 88, 49–54 (2000)CrossRef X. Hu, K. Albe, R.J. Averback, Molecular-dynamics simulations of energetic C60 impacts on (2 × 1)–(100) silicon. Appl. Phys. 88, 49–54 (2000)CrossRef
54.
go back to reference A. Paris, S. Taioli, Multiscale investigation of oxygen vacancies in TiO2 anatase and their role in memristor’s behavior. J. Phys. Chem. C 120, 22045–22053 (2016)CrossRef A. Paris, S. Taioli, Multiscale investigation of oxygen vacancies in TiO2 anatase and their role in memristor’s behavior. J. Phys. Chem. C 120, 22045–22053 (2016)CrossRef
55.
go back to reference G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993)CrossRef G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993)CrossRef
56.
go back to reference G. Kresse, J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994)CrossRef G. Kresse, J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994)CrossRef
57.
go back to reference A. Carpinteri, N.M. Pugno, One-, two- and three-dimensional universal laws for fragmentation due to impact and explosion. J. Appl. Mech. 69, 854–856 (2002)CrossRef A. Carpinteri, N.M. Pugno, One-, two- and three-dimensional universal laws for fragmentation due to impact and explosion. J. Appl. Mech. 69, 854–856 (2002)CrossRef
58.
go back to reference Z. Slanina, E. Osawa, Average bond-dissociation energies of fullerenes. Fullerene Sci. Technol. 5, 167–175 (1997)CrossRef Z. Slanina, E. Osawa, Average bond-dissociation energies of fullerenes. Fullerene Sci. Technol. 5, 167–175 (1997)CrossRef
59.
go back to reference M.J. Allen, V.C. Tung, R.B. Kaner, Honeycomb carbon: a review of graphene. Chem. Rev. 110, 132–145 (2010)PubMedCrossRef M.J. Allen, V.C. Tung, R.B. Kaner, Honeycomb carbon: a review of graphene. Chem. Rev. 110, 132–145 (2010)PubMedCrossRef
60.
go back to reference E.P. Randviir, D.A.C. Brownson, C.E. Banks, A decade of graphene research: production, applications and outlook. Mater. Today 17, 426–432 (2014)CrossRef E.P. Randviir, D.A.C. Brownson, C.E. Banks, A decade of graphene research: production, applications and outlook. Mater. Today 17, 426–432 (2014)CrossRef
61.
go back to reference S. Signetti, S. Taioli, N.M. Pugno, 2D material armors showing superior impact strength of few layers. ACS Appl. Mater. Interfaces 9, 40820–40830 (2017)PubMedCrossRef S. Signetti, S. Taioli, N.M. Pugno, 2D material armors showing superior impact strength of few layers. ACS Appl. Mater. Interfaces 9, 40820–40830 (2017)PubMedCrossRef
62.
go back to reference E. Lepore, F. Bosia, F. Bonaccorso, M. Bruna, S. Taioli, G. Garberoglio, A.C. Ferrari, N.M. Pugno, Spider silk reinforced by graphene or carbon nanotubes. 2D Mater. 4, 031013 (2017)CrossRef E. Lepore, F. Bosia, F. Bonaccorso, M. Bruna, S. Taioli, G. Garberoglio, A.C. Ferrari, N.M. Pugno, Spider silk reinforced by graphene or carbon nanotubes. 2D Mater. 4, 031013 (2017)CrossRef
63.
go back to reference A. Pedrielli, S. Taioli, G. Garberoglio, N.M. Pugno, Mechanical and thermal properties of graphene random nanofoams via molecular dynamics simulations. Carbon 132, 766–775 (2018)CrossRef A. Pedrielli, S. Taioli, G. Garberoglio, N.M. Pugno, Mechanical and thermal properties of graphene random nanofoams via molecular dynamics simulations. Carbon 132, 766–775 (2018)CrossRef
64.
go back to reference M. Azzolini, T. Morresi, K. Abrams, R. Masters, N. Stehling, C. Rodenburg, N.M. Pugno, S. Taioli, M. Dapor, Anisotropic approach for simulating electron transport in layered materials: computational and experimental study of highly oriented pyrolitic graphite. J. Phys. Chem. C 122, 10159–10166 (2018)CrossRef M. Azzolini, T. Morresi, K. Abrams, R. Masters, N. Stehling, C. Rodenburg, N.M. Pugno, S. Taioli, M. Dapor, Anisotropic approach for simulating electron transport in layered materials: computational and experimental study of highly oriented pyrolitic graphite. J. Phys. Chem. C 122, 10159–10166 (2018)CrossRef
65.
go back to reference A. Pedrielli, S. Taioli, G. Garberoglio, N.M. Pugno, Designing graphene based nanofoams with nonlinear auxetic and anisotropic mechanical properties under tension or compression. Carbon 111, 796–806 (2017)CrossRef A. Pedrielli, S. Taioli, G. Garberoglio, N.M. Pugno, Designing graphene based nanofoams with nonlinear auxetic and anisotropic mechanical properties under tension or compression. Carbon 111, 796–806 (2017)CrossRef
66.
go back to reference L.D. Landau, E.M. Lifshitz, Statistical Physics (Pergamon, Oxford, 1980) L.D. Landau, E.M. Lifshitz, Statistical Physics (Pergamon, Oxford, 1980)
67.
go back to reference R.E. Peierls, Bemerkungen über Umwandlungstemperaturen. Helv. Phys. Acta 7, 81–83 (1934) R.E. Peierls, Bemerkungen über Umwandlungstemperaturen. Helv. Phys. Acta 7, 81–83 (1934)
68.
go back to reference K.S. Novoselov, A.K. Geim, S.V. Morozov, S.V. Dubonos, Y. Zhang, D. Jiang, Room-temperature electric field effect and carrier-type inversion in graphene films. arXiv:cond-mat/0410631 (2004) K.S. Novoselov, A.K. Geim, S.V. Morozov, S.V. Dubonos, Y. Zhang, D. Jiang, Room-temperature electric field effect and carrier-type inversion in graphene films. arXiv:cond-mat/0410631 (2004)
69.
go back to reference C. Tan, H. Zhang, Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem. Soc. Rev. 44, 2713–2731 (2015)PubMedCrossRef C. Tan, H. Zhang, Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem. Soc. Rev. 44, 2713–2731 (2015)PubMedCrossRef
70.
go back to reference P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M.C. Asensio, A. Resta, B. Ealet, G. Le Lay, Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett. 108, 155501 (2012)PubMedCrossRef P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M.C. Asensio, A. Resta, B. Ealet, G. Le Lay, Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett. 108, 155501 (2012)PubMedCrossRef
71.
go back to reference X. Chen, Q. Yang, R. Meng, J. Jiang, Q. Liang, C. Tan, X. Sun, The electronic and optical properties of novel germanene and antimonene heterostructures. J. Mater. Chem. C 4, 5434–5441 (2016)CrossRef X. Chen, Q. Yang, R. Meng, J. Jiang, Q. Liang, C. Tan, X. Sun, The electronic and optical properties of novel germanene and antimonene heterostructures. J. Mater. Chem. C 4, 5434–5441 (2016)CrossRef
72.
go back to reference L. Matthes, O. Pulci, F. Bechstedt, Massive Dirac quasiparticles in the optical absorbance of graphene, silicene, germanene, and tinene. J. Phys. Condens. Matter. 25, 395305 (2013)PubMedCrossRef L. Matthes, O. Pulci, F. Bechstedt, Massive Dirac quasiparticles in the optical absorbance of graphene, silicene, germanene, and tinene. J. Phys. Condens. Matter. 25, 395305 (2013)PubMedCrossRef
73.
go back to reference H. Aoki, M. Dresselhaus (eds.), Physics of Graphene (Springer, Berlin, 2014) H. Aoki, M. Dresselhaus (eds.), Physics of Graphene (Springer, Berlin, 2014)
74.
go back to reference T. Morresi, A. Pedrielli, R. Gabbrielli, N.M. Pugno, S. Taioli, Structural, electronic and mechanical properties of all-sp2 graphene allotropes: the specific strength of tilene parent is higher than that of graphene and flakene has the minimal density. arXiv:1811.01112 [cond-mat.mtrl-sci] (2018) T. Morresi, A. Pedrielli, R. Gabbrielli, N.M. Pugno, S. Taioli, Structural, electronic and mechanical properties of all-sp2 graphene allotropes: the specific strength of tilene parent is higher than that of graphene and flakene has the minimal density. arXiv:1811.01112 [cond-mat.mtrl-sci] (2018)
75.
go back to reference W. Fischer, E. Koch., Homogeneous sphere packings with triclinic symmetry. Acta Crystallogr. Sect. A 58, 509–513 (2002)CrossRef W. Fischer, E. Koch., Homogeneous sphere packings with triclinic symmetry. Acta Crystallogr. Sect. A 58, 509–513 (2002)CrossRef
76.
go back to reference H. Sun, S. Mukherjee, M. Daly, A. Krishnan, New insights into the structure-nonlinear mechanical property relations for graphene allotropes. Carbon 110, 443–457 (2016)CrossRef H. Sun, S. Mukherjee, M. Daly, A. Krishnan, New insights into the structure-nonlinear mechanical property relations for graphene allotropes. Carbon 110, 443–457 (2016)CrossRef
78.
go back to reference Y.J. Dappe, R. Oszwaldowski, P. Pou, J. Ortega, R. Pérez, F. Flores, Local-orbital occupancy formulation of density functional theory: application to Si, C, and graphene. Phys. Rev. B 73, 235124 (2006)CrossRef Y.J. Dappe, R. Oszwaldowski, P. Pou, J. Ortega, R. Pérez, F. Flores, Local-orbital occupancy formulation of density functional theory: application to Si, C, and graphene. Phys. Rev. B 73, 235124 (2006)CrossRef
79.
go back to reference I.A. Pasti, A. Jovanović, A.S. Dobrota, S.V. Mentus, Atomic adsorption on pristine graphene along the periodic table of elements – from PBE to non-local functionals. Appl. Surf. Sci. 436, 433–440 (2018)CrossRef I.A. Pasti, A. Jovanović, A.S. Dobrota, S.V. Mentus, Atomic adsorption on pristine graphene along the periodic table of elements – from PBE to non-local functionals. Appl. Surf. Sci. 436, 433–440 (2018)CrossRef
80.
go back to reference X.L. Sheng, H.-J. Cui, F. Ye, Q.-B. Yan, Q.-R. Zheng, G. Su, Octagraphene as a versatile carbon atomic sheet for novel nanotubes, unconventional fullerenes, and hydrogen storage. J. Appl. Phys. 112, 074315 (2012)CrossRef X.L. Sheng, H.-J. Cui, F. Ye, Q.-B. Yan, Q.-R. Zheng, G. Su, Octagraphene as a versatile carbon atomic sheet for novel nanotubes, unconventional fullerenes, and hydrogen storage. J. Appl. Phys. 112, 074315 (2012)CrossRef
81.
go back to reference F. Thorpe, I. Jasiuk, Proc. Math. Phys. Sci. 438, 531–544 (1992) F. Thorpe, I. Jasiuk, Proc. Math. Phys. Sci. 438, 531–544 (1992)
82.
go back to reference S. Taioli, R. Gabbrielli, S. Simonucci, N.M. Pugno, A. Iorio, Lobachevsky crystallography made real through carbon pseudospheres. J. Phys. Condens. Matter. 28, 13LT01 (2016)PubMed S. Taioli, R. Gabbrielli, S. Simonucci, N.M. Pugno, A. Iorio, Lobachevsky crystallography made real through carbon pseudospheres. J. Phys. Condens. Matter. 28, 13LT01 (2016)PubMed
83.
go back to reference A. Iorio, G. Lambiase, The Hawking-Unruh phenomenon on graphene. Phys. Lett. B 716, 334–337 (2012)CrossRef A. Iorio, G. Lambiase, The Hawking-Unruh phenomenon on graphene. Phys. Lett. B 716, 334–337 (2012)CrossRef
84.
go back to reference M.M. Riegera, L. Steinbeck, I.D. White, H.N. Rojas, R.W. Godby, The GW space-time method for the self-energy of large systems. Comput. Phys. Commun. 177, 211–228 (1999)CrossRef M.M. Riegera, L. Steinbeck, I.D. White, H.N. Rojas, R.W. Godby, The GW space-time method for the self-energy of large systems. Comput. Phys. Commun. 177, 211–228 (1999)CrossRef
85.
go back to reference P. Umari, G. Stenuit, S. Baroni, Optimal representation of the polarization propagator for large-scale GW calculations. Phys. Rev. B 79, 201104(R) (2009) P. Umari, G. Stenuit, S. Baroni, Optimal representation of the polarization propagator for large-scale GW calculations. Phys. Rev. B 79, 201104(R) (2009)
86.
go back to reference P. Umari, G. Stenuit, S. Baroni, GW quasiparticle spectra from occupied states only. Phys. Rev. B 81, 115104 (2010)CrossRef P. Umari, G. Stenuit, S. Baroni, GW quasiparticle spectra from occupied states only. Phys. Rev. B 81, 115104 (2010)CrossRef
87.
go back to reference M.S. Hybertsen, S.G. Louie, Electron correlation in semiconductors and insulators: band gaps and quasiparticle energies. Phys. Rev. B 34, 5390–5413 (1986)CrossRef M.S. Hybertsen, S.G. Louie, Electron correlation in semiconductors and insulators: band gaps and quasiparticle energies. Phys. Rev. B 34, 5390–5413 (1986)CrossRef
88.
go back to reference C. Friedrich, M.C. Müller, S. Blügel, Band convergence and linearization error correction of all-electron GW calculations: the extreme case of zinc oxide. Phys. Rev. B 83, 081101R (2011)CrossRef C. Friedrich, M.C. Müller, S. Blügel, Band convergence and linearization error correction of all-electron GW calculations: the extreme case of zinc oxide. Phys. Rev. B 83, 081101R (2011)CrossRef
89.
go back to reference J.P. Perdew, A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048–5079 (1981)CrossRef J.P. Perdew, A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048–5079 (1981)CrossRef
90.
go back to reference E.B. Barros, A. Jorio, G.G. Samsonidzef, R.B. Capazc, A.G. Souza Filhoa, J.M. Filhoa, G. Dresselhaus, M.S. Dresselhaus, Review on the symmetry-related properties of carbon nanotubes. Phys. Rep. 431, 261–302 (2006)CrossRef E.B. Barros, A. Jorio, G.G. Samsonidzef, R.B. Capazc, A.G. Souza Filhoa, J.M. Filhoa, G. Dresselhaus, M.S. Dresselhaus, Review on the symmetry-related properties of carbon nanotubes. Phys. Rep. 431, 261–302 (2006)CrossRef
91.
go back to reference H. Lin, J. Lagoute, V. Repain, C. Chacon, Y. Girard, J.-S. Lauret, F. Ducastelle, A. Loiseau, S. Rousset, Many-body effects in electronic bandgaps of carbon nanotubes measured by scanning tunnelling spectroscopy. Nat. Mat. 9, 235–238 (2010)CrossRef H. Lin, J. Lagoute, V. Repain, C. Chacon, Y. Girard, J.-S. Lauret, F. Ducastelle, A. Loiseau, S. Rousset, Many-body effects in electronic bandgaps of carbon nanotubes measured by scanning tunnelling spectroscopy. Nat. Mat. 9, 235–238 (2010)CrossRef
92.
go back to reference R.B. Weisman, S.M. Bachilo, Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: an empirical kataura plot. Nano Lett. 3, 1235–1238 (2003)CrossRef R.B. Weisman, S.M. Bachilo, Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: an empirical kataura plot. Nano Lett. 3, 1235–1238 (2003)CrossRef
93.
go back to reference G. Dukovic, F. Wang, D. Song, M.Y. Sfeir, T.F. Heinz, L.E. Brus, Structural dependence of excitonic optical transitions and band-gap energies in carbon nanotubes. Nano Lett. 5, 2314–2318 (2005)PubMedCrossRef G. Dukovic, F. Wang, D. Song, M.Y. Sfeir, T.F. Heinz, L.E. Brus, Structural dependence of excitonic optical transitions and band-gap energies in carbon nanotubes. Nano Lett. 5, 2314–2318 (2005)PubMedCrossRef
94.
go back to reference R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998)CrossRef R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998)CrossRef
95.
go back to reference J. Deslippe, M. Dipoppa, D. Predergast, M.V.O. Moutinho, R.B. Capaz, S.G. Louie, Electron-hole interaction in carbon nanotubes: novel screening and exciton excitation spectra. Nano Lett. 9, 1330–1334 (2009)PubMedCrossRef J. Deslippe, M. Dipoppa, D. Predergast, M.V.O. Moutinho, R.B. Capaz, S.G. Louie, Electron-hole interaction in carbon nanotubes: novel screening and exciton excitation spectra. Nano Lett. 9, 1330–1334 (2009)PubMedCrossRef
96.
go back to reference M. Rohlfing, S.G. Louie, Electron-hole excitations and optical spectra from first principles. Phys. Rev. B. 62, 4927–4944 (2000)CrossRef M. Rohlfing, S.G. Louie, Electron-hole excitations and optical spectra from first principles. Phys. Rev. B. 62, 4927–4944 (2000)CrossRef
97.
go back to reference W. Kang, M.S. Hybertsen, Enhanced static approximation to the electron self-energy operator for efficient calculation of quasiparticle energies. Phys. Rev. B 82, 195108 (2010)CrossRef W. Kang, M.S. Hybertsen, Enhanced static approximation to the electron self-energy operator for efficient calculation of quasiparticle energies. Phys. Rev. B 82, 195108 (2010)CrossRef
98.
go back to reference T. Miyake, S. Saito, Quasiparticle band structure of carbon nanotubes. Phys. Rev. B 68, 155423 (2003)CrossRef T. Miyake, S. Saito, Quasiparticle band structure of carbon nanotubes. Phys. Rev. B 68, 155423 (2003)CrossRef
99.
go back to reference P. Avouris, Z. Chen, V. Perebeinos, Carbon-based electronics. Nat. Nano. 2, 605–615 (2007)CrossRef P. Avouris, Z. Chen, V. Perebeinos, Carbon-based electronics. Nat. Nano. 2, 605–615 (2007)CrossRef
100.
go back to reference M. Dapor, Mermin differential inverse inelastic mean free path of electrons in polymethylmethacrylate. Front. Mater. 2, 27 (2015)CrossRef M. Dapor, Mermin differential inverse inelastic mean free path of electrons in polymethylmethacrylate. Front. Mater. 2, 27 (2015)CrossRef
101.
go back to reference S. Taioli, S. Simonucci, L. Calliari, M. Dapor, Electron spectroscopies and inelastic processes in nanoclusters and solids: theory and experiment. Phys. Rep. 493, 237–319 (2010)CrossRef S. Taioli, S. Simonucci, L. Calliari, M. Dapor, Electron spectroscopies and inelastic processes in nanoclusters and solids: theory and experiment. Phys. Rep. 493, 237–319 (2010)CrossRef
102.
go back to reference S. Taioli, S. Simonucci, A computational perspective on multichannel scattering theory with applications to physical and nuclear chemistry. Annu. Rep. Comput. Chem. 11, 191–310 (2015)CrossRef S. Taioli, S. Simonucci, A computational perspective on multichannel scattering theory with applications to physical and nuclear chemistry. Annu. Rep. Comput. Chem. 11, 191–310 (2015)CrossRef
103.
go back to reference Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H.M. Hill, A.M. van der Zande, D.A. Chenet, E.-M. Shih, J. Hone, T.F. Heinz, Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2. Phys. Rev. B 90, 205422 (2014)CrossRef Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H.M. Hill, A.M. van der Zande, D.A. Chenet, E.-M. Shih, J. Hone, T.F. Heinz, Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2. Phys. Rev. B 90, 205422 (2014)CrossRef
104.
go back to reference J. Daniels, C.V. Festenberg, H. Raether, K. Zeppenfeld, Optical Constants of Solids by Electron Spectroscopy. Springer Tracts in Modern Physics, vol. 54 (Springer, Berlin, 1970), pp. 77–135 J. Daniels, C.V. Festenberg, H. Raether, K. Zeppenfeld, Optical Constants of Solids by Electron Spectroscopy. Springer Tracts in Modern Physics, vol. 54 (Springer, Berlin, 1970), pp. 77–135
105.
go back to reference H. Raether, Excitation of plasmons and interband transitions by electrons, vol. 88 (Springer, Berlin, 1980) H. Raether, Excitation of plasmons and interband transitions by electrons, vol. 88 (Springer, Berlin, 1980)
106.
go back to reference S. Baroni, R. Resta, Ab initio calculation of the macroscopic dielectric constant in silicon. Phys. Rev. B 33, 7017–7021 (1986)CrossRef S. Baroni, R. Resta, Ab initio calculation of the macroscopic dielectric constant in silicon. Phys. Rev. B 33, 7017–7021 (1986)CrossRef
107.
go back to reference M. Dapor, G. Garberoglio, L. Calliari, Energy loss of electrons impinging upon glassy carbon, amorphous carbon, and diamond: comparison between two different dispersion laws. Nucl. Instrum. Methods Phys. Res. B 352, 181–185 (2015)CrossRef M. Dapor, G. Garberoglio, L. Calliari, Energy loss of electrons impinging upon glassy carbon, amorphous carbon, and diamond: comparison between two different dispersion laws. Nucl. Instrum. Methods Phys. Res. B 352, 181–185 (2015)CrossRef
108.
go back to reference M. Dapor, L. Calliari, M. Filippi, Computational and experimental study of π and π + σ plasmon loss spectra for low energy (<1000 eV) electrons impinging on highly oriented pyrolitic graphite (HOPG). Nucl. Instrum. Methods Phys. Res. B 255, 276–280 (2007)CrossRef M. Dapor, L. Calliari, M. Filippi, Computational and experimental study of π and π + σ plasmon loss spectra for low energy (<1000 eV) electrons impinging on highly oriented pyrolitic graphite (HOPG). Nucl. Instrum. Methods Phys. Res. B 255, 276–280 (2007)CrossRef
109.
go back to reference R. Garcia-Molina, I. Abril, I. Kyriakou, D. Emfietzoglou, Inelastic scattering and energy loss of swift electron beams in biologically relevant materials. Surf. Interface Anal. 49, 11–17 (2017)CrossRef R. Garcia-Molina, I. Abril, I. Kyriakou, D. Emfietzoglou, Inelastic scattering and energy loss of swift electron beams in biologically relevant materials. Surf. Interface Anal. 49, 11–17 (2017)CrossRef
110.
go back to reference E. Runge, E.K.U. Gross, Density-functional theory for time-dependent systems. Phys. Rev. Lett. 52, 997–1000 (1984)CrossRef E. Runge, E.K.U. Gross, Density-functional theory for time-dependent systems. Phys. Rev. Lett. 52, 997–1000 (1984)CrossRef
111.
go back to reference C.A. Ullrich, Time-Dependent Density Functional Theory: Concepts and Applications. Oxford Graduate Texts (Oxford University Press, Oxford, 2012) C.A. Ullrich, Time-Dependent Density Functional Theory: Concepts and Applications. Oxford Graduate Texts (Oxford University Press, Oxford, 2012)
112.
go back to reference G. Onida, L. Reining, A. Rubio, Electronic excitations: density-functional versus many-body Green’s-function approaches. Rev. Mod. Phys. 74, 601–659 (2002)CrossRef G. Onida, L. Reining, A. Rubio, Electronic excitations: density-functional versus many-body Green’s-function approaches. Rev. Mod. Phys. 74, 601–659 (2002)CrossRef
113.
go back to reference L. Hedin, New method for calculating the one-particle green’s function with application to the electron-gas problem. Phys. Rev. 139, A796–A823 (1965)CrossRef L. Hedin, New method for calculating the one-particle green’s function with application to the electron-gas problem. Phys. Rev. 139, A796–A823 (1965)CrossRef
114.
go back to reference S.L. Adler, Quantum theory of the dielectric constant in real solids. Phys. Rev. 126, 413–420 (1962)CrossRef S.L. Adler, Quantum theory of the dielectric constant in real solids. Phys. Rev. 126, 413–420 (1962)CrossRef
115.
go back to reference N. Wiser, Dielectric constant with local field effects included. Phys. Rev. 129, 62–69 (1963)CrossRef N. Wiser, Dielectric constant with local field effects included. Phys. Rev. 129, 62–69 (1963)CrossRef
116.
go back to reference R.H. Ritchie, Plasma losses by fast electrons in thin films. Phys. Rev. 106, 874–881 (1957)CrossRef R.H. Ritchie, Plasma losses by fast electrons in thin films. Phys. Rev. 106, 874–881 (1957)CrossRef
117.
go back to reference M. Dapor, Electron–Beam Interactions with Solids (Springer, Berlin, 2003)CrossRef M. Dapor, Electron–Beam Interactions with Solids (Springer, Berlin, 2003)CrossRef
118.
go back to reference H. Nikjoo, S. Uehara, D. Emfietzoglou, Interaction of Radiation with Matter (CRC Press/Taylor & Francis Group, Boca Raton, 2012) H. Nikjoo, S. Uehara, D. Emfietzoglou, Interaction of Radiation with Matter (CRC Press/Taylor & Francis Group, Boca Raton, 2012)
119.
go back to reference H. Nikjoo, D. Emfietzoglou, T. Liamsuwan, R. Taleei, D. Liljequist, S. Uehara, Radiation track, DNA damage and response–a review. Rep. Prog. Phys. 79, 116601 (2016)PubMedCrossRef H. Nikjoo, D. Emfietzoglou, T. Liamsuwan, R. Taleei, D. Liljequist, S. Uehara, Radiation track, DNA damage and response–a review. Rep. Prog. Phys. 79, 116601 (2016)PubMedCrossRef
120.
go back to reference M. Dapor, Energy loss of fast electrons impinging upon polymethylmethacrylate. Nucl. Instrum. Methods Phys. Res. B 352, 190–194 (2015)CrossRef M. Dapor, Energy loss of fast electrons impinging upon polymethylmethacrylate. Nucl. Instrum. Methods Phys. Res. B 352, 190–194 (2015)CrossRef
121.
go back to reference F. Yubero, S. Tougaard, Model for quantitative analysis of reflection-electron-energy-loss spectra. Phys. Rev. B 46, 2486–2497 (1992)CrossRef F. Yubero, S. Tougaard, Model for quantitative analysis of reflection-electron-energy-loss spectra. Phys. Rev. B 46, 2486–2497 (1992)CrossRef
122.
go back to reference E. Shiles, T. Sasaki, M. Inokuti, D.Y. Smith, Self-consistency and sum-rule tests in the Kramers-Kronig analysis of optical data: applications to aluminum. Phys. Rev. B 22,1612–1628 (1980)CrossRef E. Shiles, T. Sasaki, M. Inokuti, D.Y. Smith, Self-consistency and sum-rule tests in the Kramers-Kronig analysis of optical data: applications to aluminum. Phys. Rev. B 22,1612–1628 (1980)CrossRef
123.
go back to reference R. Garcia-Molina, I. Abril, C.D. Denton, S. Heredia-Avalos, Allotropic effects on the energy loss of swift H+ and He+ ion beams through thin foils. Nucl. Instrum. Methods Phys. Res. B 249, 6–12 (2006)CrossRef R. Garcia-Molina, I. Abril, C.D. Denton, S. Heredia-Avalos, Allotropic effects on the energy loss of swift H+ and He+ ion beams through thin foils. Nucl. Instrum. Methods Phys. Res. B 249, 6–12 (2006)CrossRef
124.
go back to reference S. Tanuma, C.J. Powell, D.R. Penn, Calculations of electron inelastic mean free paths. IX. Data for 41 elemental solids over the 50 eV to 30 keV range. Surf. Interface Anal. 43, 689–713 (2011)CrossRef S. Tanuma, C.J. Powell, D.R. Penn, Calculations of electron inelastic mean free paths. IX. Data for 41 elemental solids over the 50 eV to 30 keV range. Surf. Interface Anal. 43, 689–713 (2011)CrossRef
125.
go back to reference S. Sharma, J. Dewhurst, A. Sanna, E.K.U. Gross, Bootstrap approximation for the exchange-correlation kernel of time-dependent density-functional theory. Phys. Rev. Lett. 107, 186401 (2011)PubMedCrossRef S. Sharma, J. Dewhurst, A. Sanna, E.K.U. Gross, Bootstrap approximation for the exchange-correlation kernel of time-dependent density-functional theory. Phys. Rev. Lett. 107, 186401 (2011)PubMedCrossRef
126.
go back to reference S. Waidmann, M. Knupfer, B. Arnold, J. Fink, A. Fleszar, W. Hanke, Phys. Rev. B 61, 10149–10153 (2000)CrossRef S. Waidmann, M. Knupfer, B. Arnold, J. Fink, A. Fleszar, W. Hanke, Phys. Rev. B 61, 10149–10153 (2000)CrossRef
127.
go back to reference J. Harl, The linear response function in density functional theory: optical spectra and improved description of the electron correlation. Ph.D. thesis, Universitat Wien (2008) J. Harl, The linear response function in density functional theory: optical spectra and improved description of the electron correlation. Ph.D. thesis, Universitat Wien (2008)
128.
go back to reference A.B. Bortz, M.H. Kalos, J.L. Lebowitz, A new algorithm for Monte Carlo simulation of Ising spin systems. J. Comput. Phys. 17, 10–18 (1975)CrossRef A.B. Bortz, M.H. Kalos, J.L. Lebowitz, A new algorithm for Monte Carlo simulation of Ising spin systems. J. Comput. Phys. 17, 10–18 (1975)CrossRef
129.
go back to reference M. Dapor, Transport of Energetic Electrons in Solids, 2nd edn. (Springer, Berlin, 2017)CrossRef M. Dapor, Transport of Energetic Electrons in Solids, 2nd edn. (Springer, Berlin, 2017)CrossRef
130.
go back to reference M. Dapor, Role of the tail of high-energy secondary electrons in the Monte Carlo evaluation of the fraction of electrons backscattered from polymethylmethacrylate. Appl. Surf. Sci. 391, 3–11 (2017)CrossRef M. Dapor, Role of the tail of high-energy secondary electrons in the Monte Carlo evaluation of the fraction of electrons backscattered from polymethylmethacrylate. Appl. Surf. Sci. 391, 3–11 (2017)CrossRef
131.
go back to reference S. Taioli, S. Simonucci, M. Dapor, Surprises: when ab initio meets statistics in extended systems. Comput. Sci. Discov. 2, 015002 (2009)CrossRef S. Taioli, S. Simonucci, M. Dapor, Surprises: when ab initio meets statistics in extended systems. Comput. Sci. Discov. 2, 015002 (2009)CrossRef
132.
go back to reference S. Taioli, S. Simonucci, L. Calliari, M. Filippi, M. Dapor, Mixed ab initio quantum mechanical and MonteCarlo calculations of secondary emission from SiO2 nanoclusters. Phys. Rev. B 79, 085432 (2009)CrossRef S. Taioli, S. Simonucci, L. Calliari, M. Filippi, M. Dapor, Mixed ab initio quantum mechanical and MonteCarlo calculations of secondary emission from SiO2 nanoclusters. Phys. Rev. B 79, 085432 (2009)CrossRef
133.
go back to reference S. Taioli, A bird’s eye view on the concept of multichannel scattering with applications to materials science, condensed matter, and nuclear astrophysics. Front. Mater. 2, 71 (2015) S. Taioli, A bird’s eye view on the concept of multichannel scattering with applications to materials science, condensed matter, and nuclear astrophysics. Front. Mater. 2, 71 (2015)
134.
go back to reference M.S. Green, Markoff random processes and the statistical mechanics of time-dependent phenomena. II. Irreversible processes in fluids. J. Chem. Phys. 22, 398–413 (1954) M.S. Green, Markoff random processes and the statistical mechanics of time-dependent phenomena. II. Irreversible processes in fluids. J. Chem. Phys. 22, 398–413 (1954)
135.
go back to reference R. Kubo, Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Jpn. 12, 570–586 (1957) R. Kubo, Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Jpn. 12, 570–586 (1957)
136.
go back to reference A. Pedrielli, S. Taioli, G. Garberoglio, N.M. Pugno, Gas adsorption and dynamics in pillared graphene frameworks. Microporous Mesoporous Mater. 257, 222–231 (2018)CrossRef A. Pedrielli, S. Taioli, G. Garberoglio, N.M. Pugno, Gas adsorption and dynamics in pillared graphene frameworks. Microporous Mesoporous Mater. 257, 222–231 (2018)CrossRef
137.
go back to reference G. Garberoglio, N.M. Pugno, S. Taioli, Gas adsorption and separation in realistic and idealized frameworks of organic pillared graphene: a comparative study. J. Phys. Chem. C 119, 1980–1987 (2014)CrossRef G. Garberoglio, N.M. Pugno, S. Taioli, Gas adsorption and separation in realistic and idealized frameworks of organic pillared graphene: a comparative study. J. Phys. Chem. C 119, 1980–1987 (2014)CrossRef
138.
go back to reference A. Battisti, S. Taioli, G. Garberoglio, Zeolitic imidazolate frameworks for separation of binary mixtures of CO2, CH4, N2 and H2: a computer simulation investigation. Microporous Mesoporous Mater. 143, 46–53 (2011)CrossRef A. Battisti, S. Taioli, G. Garberoglio, Zeolitic imidazolate frameworks for separation of binary mixtures of CO2, CH4, N2 and H2: a computer simulation investigation. Microporous Mesoporous Mater. 143, 46–53 (2011)CrossRef
139.
go back to reference G. Garberoglio, S. Taioli, Modelling flexibility in metal–organic frameworks: comparison between density-functional tight-binding and universal force field approaches for bonded interactions. Microporous Mesoporous Mater 163, 215–220 (2012)CrossRef G. Garberoglio, S. Taioli, Modelling flexibility in metal–organic frameworks: comparison between density-functional tight-binding and universal force field approaches for bonded interactions. Microporous Mesoporous Mater 163, 215–220 (2012)CrossRef
140.
go back to reference L. Lu, P.S.E. Yeo, C.W. Gan, P. Wu, K.P. Loh, Transforming C60 molecules into graphene quantum dots. Nat. Nanotechnol. 6, 247–252 (2011)PubMedCrossRef L. Lu, P.S.E. Yeo, C.W. Gan, P. Wu, K.P. Loh, Transforming C60 molecules into graphene quantum dots. Nat. Nanotechnol. 6, 247–252 (2011)PubMedCrossRef
141.
go back to reference N. Swami, H. He, B.E. Koel, Polymerization and decomposition of C60 on Pt(111) surfaces. Phys. Rev. B 59, 8283–8291 (1999)CrossRef N. Swami, H. He, B.E. Koel, Polymerization and decomposition of C60 on Pt(111) surfaces. Phys. Rev. B 59, 8283–8291 (1999)CrossRef
142.
go back to reference E.P. Randviir, D.A.C. Brownson, C.E. Banks, A decade of graphene research: production, applications and outlook. Mater. Today 17, 426–432 (2014)CrossRef E.P. Randviir, D.A.C. Brownson, C.E. Banks, A decade of graphene research: production, applications and outlook. Mater. Today 17, 426–432 (2014)CrossRef
Metadata
Title
Enabling Materials By Dimensionality: From 0D to 3D Carbon-Based Nanostructures
Author
Simone Taioli
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-0006-0_5

Premium Partner