Skip to main content
Top
Published in: Wireless Networks 6/2020

04-05-2020

Energy efficiency resource allocation based on spectrum-power tradeoff in distributed satellite cluster network

Authors: Weilong Wang, Jun Wei, Shanghong Zhao, Yongjun Li, Yongxing Zheng

Published in: Wireless Networks | Issue 6/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Distributed satellite cluster network is a novel structure in spatial information network. This paper investigates the spectrum-power tradeoff algorithm for distributed satellite cluster (DSC), which enables the master satellite (MS) to offload data traffic to the slave satellite (SS). The SS provides power resource to the master satellite users (MSUs) with bandwidth as compensation. The purpose of the proposed algorithm is to maximize the energy efficiency (EE) of the SS while ensuring the QoS of the DSC. Considering data rate and bandwidth constraints of the MS, the SS jointly allocates bandwidth and power resources based on the served MSU set, meanwhile, data rate and power constraints of the SS should be also satisfied. We first prove that compensating bandwidth of a MSU can only be used by one slave satellite user. Then objective function is simplified to the equivalent subtractive form that can be solved by convex optimization method. Besides, we discuss the MSU selection conditions and employ them to the proposed spectrum-power tradeoff algorithm. The numerical results validate the performance improvement of the proposed algorithm and demonstrate the impact of power, bandwidth and data rate on the EE.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Barnhart, D. J., Vladimirova, T., & Sweeting, M. N. (2007). Very-small-satellite design for distributed space missions. Journal of Spacecraft & Rockets,44(44), 1294–1306.CrossRef Barnhart, D. J., Vladimirova, T., & Sweeting, M. N. (2007). Very-small-satellite design for distributed space missions. Journal of Spacecraft & Rockets,44(44), 1294–1306.CrossRef
2.
go back to reference Radhakrishnan, R., Edmonson, W. W., Afghah, F., Rodriguez-Osorio, R. M., Pinto, F., & Burleigh, S. C. (2016). Survey of inter-satellite communication for small satellite systems: Physical layer to network layer view. IEEE Communications Surveys & Tutorials,18(4), 2442–2473.CrossRef Radhakrishnan, R., Edmonson, W. W., Afghah, F., Rodriguez-Osorio, R. M., Pinto, F., & Burleigh, S. C. (2016). Survey of inter-satellite communication for small satellite systems: Physical layer to network layer view. IEEE Communications Surveys & Tutorials,18(4), 2442–2473.CrossRef
3.
go back to reference Dong, F., Li, X., Yao, Q., He, Y., & Wang, J. (2015). Topology structure design and performance analysis on distributed satellite cluster networks. In 2015 4th international conference on computer science and network technology (ICCSNT) (vol. 1, pp. 881–884), IEEE. Dong, F., Li, X., Yao, Q., He, Y., & Wang, J. (2015). Topology structure design and performance analysis on distributed satellite cluster networks. In 2015 4th international conference on computer science and network technology (ICCSNT) (vol. 1, pp. 881–884), IEEE.
4.
go back to reference Dong, F., Wang, J., Yang, J., & Cai, C. (2015). Distributed satellite cluster network: A survey. Journal of Donghua University (English Edition),32(2), 33. Dong, F., Wang, J., Yang, J., & Cai, C. (2015). Distributed satellite cluster network: A survey. Journal of Donghua University (English Edition),32(2), 33.
5.
go back to reference Brown, O., Eremenko, P., & Collopy, P. (2009). Value-centric design methodologies for fractionated spacecraft: Progress summary from phase I of the DARPA system F6 program. In AIAA space 2009 conference and exposition (p. 6540). Brown, O., Eremenko, P., & Collopy, P. (2009). Value-centric design methodologies for fractionated spacecraft: Progress summary from phase I of the DARPA system F6 program. In AIAA space 2009 conference and exposition (p. 6540).
6.
go back to reference Gayrard, J.-D., Zein-Alabedeen, T., Cotellessa, A., Gallinaro, G., Perrot, G., & Bertenyi, E. (2004). SkyLAN: A cluster of geostationnary satellites for broadband communications. In 22nd AIAA international communications satellite systems conference and exhibit 2004 (ICSSC) (p. 3233). Gayrard, J.-D., Zein-Alabedeen, T., Cotellessa, A., Gallinaro, G., Perrot, G., & Bertenyi, E. (2004). SkyLAN: A cluster of geostationnary satellites for broadband communications. In 22nd AIAA international communications satellite systems conference and exhibit 2004 (ICSSC) (p. 3233).
7.
go back to reference Collopy, P., & Sundberg, E. (2010). Creating value with space based group architecture. In AIAA space 2010 conference and exposition (p. 8799). Collopy, P., & Sundberg, E. (2010). Creating value with space based group architecture. In AIAA space 2010 conference and exposition (p. 8799).
8.
go back to reference Calvel, B. (2000). Recent development in silicon carbide lightweight optics at Matra Marconi space. Next Generation Space Telescope Science and Technology,207, 435. Calvel, B. (2000). Recent development in silicon carbide lightweight optics at Matra Marconi space. Next Generation Space Telescope Science and Technology,207, 435.
9.
go back to reference Zhong, X., Hao, Y., He, Y., & Huang, Y. (2017). Joint downlink power and time-slot allocation for distributed satellite cluster network based on Pareto optimization. IEEE Access,99, 1. Zhong, X., Hao, Y., He, Y., & Huang, Y. (2017). Joint downlink power and time-slot allocation for distributed satellite cluster network based on Pareto optimization. IEEE Access,99, 1.
10.
go back to reference Han, T., & Ansari, N. (2014). Enabling mobile traffic offloading via energy spectrum trading. IEEE Transactions on Wireless Communications,13(6), 3317–3328.CrossRef Han, T., & Ansari, N. (2014). Enabling mobile traffic offloading via energy spectrum trading. IEEE Transactions on Wireless Communications,13(6), 3317–3328.CrossRef
11.
go back to reference She, C., Yang, C., & Liu, L. (2015). Energy-efficient resource allocation for MIMO-OFDM systems serving random sources with statistical QoS requirement. IEEE Transactions on Communications,63(11), 4125–4141.CrossRef She, C., Yang, C., & Liu, L. (2015). Energy-efficient resource allocation for MIMO-OFDM systems serving random sources with statistical QoS requirement. IEEE Transactions on Communications,63(11), 4125–4141.CrossRef
12.
go back to reference Xu, Y., Hu, R. Q., Qian, Y., & Znati, T. (2016). Video quality-based spectral and energy efficient mobile association in heterogeneous wireless networks. IEEE Transactions on Communications,64(2), 805–817.CrossRef Xu, Y., Hu, R. Q., Qian, Y., & Znati, T. (2016). Video quality-based spectral and energy efficient mobile association in heterogeneous wireless networks. IEEE Transactions on Communications,64(2), 805–817.CrossRef
13.
go back to reference Han, T., & Ansari, N. (2016). A traffic load balancing framework for software-defined radio access networks powered by hybrid energy sources. IEEE/ACM Transactions on Networking,24(2), 1038–1051.CrossRef Han, T., & Ansari, N. (2016). A traffic load balancing framework for software-defined radio access networks powered by hybrid energy sources. IEEE/ACM Transactions on Networking,24(2), 1038–1051.CrossRef
14.
go back to reference Liu, X., Zhang, X., Jia, M., Fan, L., Lu, W., & Zhai, X. (2018). 5G-based green broadband communication system design with simultaneous wireless information and power transfer. Physical Communication,28, 130–137.CrossRef Liu, X., Zhang, X., Jia, M., Fan, L., Lu, W., & Zhai, X. (2018). 5G-based green broadband communication system design with simultaneous wireless information and power transfer. Physical Communication,28, 130–137.CrossRef
15.
go back to reference Liu, X., Jia, M., Zhang, X., & Lu, W. (2019). A novel multi-channel Internet of Things based on dynamic spectrum sharing in 5G communication. IEEE Internet of Things Journal,6(4), 5962–5970.CrossRef Liu, X., Jia, M., Zhang, X., & Lu, W. (2019). A novel multi-channel Internet of Things based on dynamic spectrum sharing in 5G communication. IEEE Internet of Things Journal,6(4), 5962–5970.CrossRef
16.
go back to reference Chen, Y., Zhang, S., Xu, S., & Li, G. Y. (2011). Fundamental trade-offs on green wireless networks. IEEE Communications Magazine,49(6), 30–37.CrossRef Chen, Y., Zhang, S., Xu, S., & Li, G. Y. (2011). Fundamental trade-offs on green wireless networks. IEEE Communications Magazine,49(6), 30–37.CrossRef
17.
go back to reference Liu, X., & Zhang, X. (2019). Rate and Energy Efficiency Improvements for 5G-based IoT with Simultaneous Transfer. IEEE Internet of Things Journal,6(4), 5971–5980.CrossRef Liu, X., & Zhang, X. (2019). Rate and Energy Efficiency Improvements for 5G-based IoT with Simultaneous Transfer. IEEE Internet of Things Journal,6(4), 5971–5980.CrossRef
18.
go back to reference Meshkati, F., Poor, H. V., & Schwartz, S. C. (2007). Energy-efficient resource allocation in wireless networks. IEEE Signal Processing Magazine,24(3), 58–86.CrossRef Meshkati, F., Poor, H. V., & Schwartz, S. C. (2007). Energy-efficient resource allocation in wireless networks. IEEE Signal Processing Magazine,24(3), 58–86.CrossRef
19.
go back to reference Li, S., Ni, Q., Sun, Y., Min, G., & Al-Rubaye, S. (2018). Energy-efficient resource allocation for industrial cyber-physical IoT systems in 5G Era. IEEE Transactions on Industrial Informatics,14(6), 2618–2628.CrossRef Li, S., Ni, Q., Sun, Y., Min, G., & Al-Rubaye, S. (2018). Energy-efficient resource allocation for industrial cyber-physical IoT systems in 5G Era. IEEE Transactions on Industrial Informatics,14(6), 2618–2628.CrossRef
20.
go back to reference Zhou, F., Wu, Y., Hu, R. Q., Wang, Y., & Wong, K. K. (2018). Energy-Efficient NOMA Enabled Heterogeneous Cloud Radio Access Networks. IEEE Network,32(2), 152–160.CrossRef Zhou, F., Wu, Y., Hu, R. Q., Wang, Y., & Wong, K. K. (2018). Energy-Efficient NOMA Enabled Heterogeneous Cloud Radio Access Networks. IEEE Network,32(2), 152–160.CrossRef
21.
go back to reference Cheng, K, Teng, Y., Sun, W., Liu, A., & Wang, X. (2018). Energy-efficient joint offloading and wireless resource allocation strategy in multi-MEC server systems. In 2018 IEEE international conference on communications (ICC) (pp. 1–6). Cheng, K, Teng, Y., Sun, W., Liu, A., & Wang, X. (2018). Energy-efficient joint offloading and wireless resource allocation strategy in multi-MEC server systems. In 2018 IEEE international conference on communications (ICC) (pp. 1–6).
22.
go back to reference Zhou, Z., Dong, M., Ota, K., Shi, R., Liu, Z., & Sato, T. (2015). Game-theoretic approach to energy-efficient resource allocation in device-to-device underlay communications. IET Communications,9(3), 375–385.CrossRef Zhou, Z., Dong, M., Ota, K., Shi, R., Liu, Z., & Sato, T. (2015). Game-theoretic approach to energy-efficient resource allocation in device-to-device underlay communications. IET Communications,9(3), 375–385.CrossRef
23.
go back to reference You, C., Zeng, Y., Zhang, R., & Huang, K. (2018). Asynchronous mobile-edge computation offloading: energy-efficient resource management. IEEE Transactions on Wireless Communications,17(11), 7590–7605.CrossRef You, C., Zeng, Y., Zhang, R., & Huang, K. (2018). Asynchronous mobile-edge computation offloading: energy-efficient resource management. IEEE Transactions on Wireless Communications,17(11), 7590–7605.CrossRef
24.
go back to reference Deng, L., Rui, Y., Cheng, P., Zhang, J., Zhang, Q., & Li, M. (2012). A unified energy efficiency and spectral efficiency tradeoff metric in wireless networks. IEEE Communications Letters,17(1), 55–58.CrossRef Deng, L., Rui, Y., Cheng, P., Zhang, J., Zhang, Q., & Li, M. (2012). A unified energy efficiency and spectral efficiency tradeoff metric in wireless networks. IEEE Communications Letters,17(1), 55–58.CrossRef
25.
go back to reference Miao, G., Himayat, N., & Li, G. Y. (2010). Energy-efficient link adaptation in frequency-selective channels. IEEE Transactions on Communications,58(2), 545–554.CrossRef Miao, G., Himayat, N., & Li, G. Y. (2010). Energy-efficient link adaptation in frequency-selective channels. IEEE Transactions on Communications,58(2), 545–554.CrossRef
26.
go back to reference Wu, Q., Li, G. Y., Chen, W., & Ng, D. W. K. (2016). Energy-efficient small cell with spectrum-power trading. IEEE Journal on Selected Areas in Communications,34(12), 3394–3408.CrossRef Wu, Q., Li, G. Y., Chen, W., & Ng, D. W. K. (2016). Energy-efficient small cell with spectrum-power trading. IEEE Journal on Selected Areas in Communications,34(12), 3394–3408.CrossRef
27.
go back to reference Aravanis, A. I., Bhavani, S. M. R., Arapoglou, P. D., Danoy, G., Cottis, P. G., & Ottersten, B. (2015). Power allocation in multibeam satellite systems: A two-stage multi-objective optimization. IEEE Transactions on Wireless Communications,14(6), 3171–3182.CrossRef Aravanis, A. I., Bhavani, S. M. R., Arapoglou, P. D., Danoy, G., Cottis, P. G., & Ottersten, B. (2015). Power allocation in multibeam satellite systems: A two-stage multi-objective optimization. IEEE Transactions on Wireless Communications,14(6), 3171–3182.CrossRef
28.
go back to reference Michel, T., Thapa, B., & Taylor, S. (2013). 802.11 s based multi-radio multi-channel mesh networking for fractionated spacecraft. In 2013 IEEE aerospace conference (pp. 1–8), IEEE. Michel, T., Thapa, B., & Taylor, S. (2013). 802.11 s based multi-radio multi-channel mesh networking for fractionated spacecraft. In 2013 IEEE aerospace conference (pp. 1–8), IEEE.
29.
go back to reference Dong, F., He, Y., Nan, H., Zhang, Z., & Wang, J. (2015). System capacity analysis on constellation of interconnected HAP networks. In 2015 IEEE fifth international conference on big data and cloud computing (pp. 154–159), IEEE. Dong, F., He, Y., Nan, H., Zhang, Z., & Wang, J. (2015). System capacity analysis on constellation of interconnected HAP networks. In 2015 IEEE fifth international conference on big data and cloud computing (pp. 154–159), IEEE.
30.
go back to reference Campbell, M. E. (2004). Collision monitoring within satellite clusters. IEEE Transactions on Control Systems Technology,13(1), 42–55.CrossRef Campbell, M. E. (2004). Collision monitoring within satellite clusters. IEEE Transactions on Control Systems Technology,13(1), 42–55.CrossRef
31.
go back to reference Zhang, J. (2006). Research on autonomous formation reconfiguration techniques for distributed satellite systems. Changsha: Ph.D. Dissertation, University of Defense Technology. Zhang, J. (2006). Research on autonomous formation reconfiguration techniques for distributed satellite systems. Changsha: Ph.D. Dissertation, University of Defense Technology.
32.
go back to reference Guo, Y., Xu, J., Duan, L., & Zhang, R. (2014). Joint energy and spectrum cooperation for cellular communication systems. IEEE Transactions on Communications,62(10), 3678–3691.CrossRef Guo, Y., Xu, J., Duan, L., & Zhang, R. (2014). Joint energy and spectrum cooperation for cellular communication systems. IEEE Transactions on Communications,62(10), 3678–3691.CrossRef
33.
go back to reference Letzepis, N., & Grant, A. J. (2008). Capacity of the multiple spot beam satellite channel with Rician fading. IEEE Transactions on Information Theory,54(11), 5210–5222.MathSciNetCrossRef Letzepis, N., & Grant, A. J. (2008). Capacity of the multiple spot beam satellite channel with Rician fading. IEEE Transactions on Information Theory,54(11), 5210–5222.MathSciNetCrossRef
34.
go back to reference Arti, M. K. (2016). Channel estimation and detection in satellite communication systems. IEEE Transactions on Vehicular Technology,65(12), 10173–10179.CrossRef Arti, M. K. (2016). Channel estimation and detection in satellite communication systems. IEEE Transactions on Vehicular Technology,65(12), 10173–10179.CrossRef
35.
go back to reference Abdi, A., Lau, W. C., Alouini, M. S., & Kaveh, M. (2003). A new simple model for land mobile satellite channels: first- and second-order statistics. IEEE Transactions on Wireless Communications,2(3), 519–528.CrossRef Abdi, A., Lau, W. C., Alouini, M. S., & Kaveh, M. (2003). A new simple model for land mobile satellite channels: first- and second-order statistics. IEEE Transactions on Wireless Communications,2(3), 519–528.CrossRef
36.
go back to reference Ismail, M., Zhuang, W., Serpedin, E., & Qaraqe, K. (2015). A survey on green mobile networking: From the perspectives of network operators and mobile users. IEEE Communications Surveys & Tutorials,17(3), 1535–1556.CrossRef Ismail, M., Zhuang, W., Serpedin, E., & Qaraqe, K. (2015). A survey on green mobile networking: From the perspectives of network operators and mobile users. IEEE Communications Surveys & Tutorials,17(3), 1535–1556.CrossRef
37.
go back to reference Wang, W., Zhao, S., Zheng, Y., & Li, Y. (2019). Resource allocation method of cognitive satellite terrestrial networks under non-ideal spectrum sensing. IEEE Access,7, 7957–7964.CrossRef Wang, W., Zhao, S., Zheng, Y., & Li, Y. (2019). Resource allocation method of cognitive satellite terrestrial networks under non-ideal spectrum sensing. IEEE Access,7, 7957–7964.CrossRef
39.
go back to reference Boyd, S., & Vandenberghe, L. (2004). Convex optimization (p. 3). Cambrige: Cambrige University Press.CrossRef Boyd, S., & Vandenberghe, L. (2004). Convex optimization (p. 3). Cambrige: Cambrige University Press.CrossRef
40.
go back to reference Corless, R. M., Jeffrey, D. J., & Knuth, D. E. (1997). A sequence of series for the Lambert W function. ISSAC,97, 197–204.MathSciNetCrossRef Corless, R. M., Jeffrey, D. J., & Knuth, D. E. (1997). A sequence of series for the Lambert W function. ISSAC,97, 197–204.MathSciNetCrossRef
41.
go back to reference He, C., Sheng, B., Zhu, P., You, X., & Li, G. Y. (2013). Energy- and Spectral-Efficiency Tradeoff for Distributed Antenna Systems with Proportional Fairness. IEEE Journal on Selected Areas in Communications,31(5), 894–902.CrossRef He, C., Sheng, B., Zhu, P., You, X., & Li, G. Y. (2013). Energy- and Spectral-Efficiency Tradeoff for Distributed Antenna Systems with Proportional Fairness. IEEE Journal on Selected Areas in Communications,31(5), 894–902.CrossRef
42.
go back to reference Bazaraa, M. S., Sherali, H. D., & Shetty, C. M. (2013). Nonlinear programming: Theory and algorithms. Hoboken: Wiley.MATH Bazaraa, M. S., Sherali, H. D., & Shetty, C. M. (2013). Nonlinear programming: Theory and algorithms. Hoboken: Wiley.MATH
43.
go back to reference Ngo, D. T., Khakurel, S., & Le-Ngoc, T. (2014). Joint subchannel assignment and power allocation for OFDMA femtocell networks. IEEE Transactions on Wireless Communications,13(1), 342–355.CrossRef Ngo, D. T., Khakurel, S., & Le-Ngoc, T. (2014). Joint subchannel assignment and power allocation for OFDMA femtocell networks. IEEE Transactions on Wireless Communications,13(1), 342–355.CrossRef
44.
go back to reference Ng, D. W. K., Lo, E. S., & Schober, R. (2012). Energy-efficient resource allocation in multi-cell OFDMA systems with limited backhaul capacity. IEEE Transactions on Wireless Communications,11(10), 3618–3631.CrossRef Ng, D. W. K., Lo, E. S., & Schober, R. (2012). Energy-efficient resource allocation in multi-cell OFDMA systems with limited backhaul capacity. IEEE Transactions on Wireless Communications,11(10), 3618–3631.CrossRef
45.
go back to reference Wu, Q., Tao, M., Ng, D. W. K., Chen, W., & Schober, R. (2016). Energy-efficient resource allocation for wireless powered communication networks. IEEE Transactions on Wireless Communications,15(3), 2312–2327.CrossRef Wu, Q., Tao, M., Ng, D. W. K., Chen, W., & Schober, R. (2016). Energy-efficient resource allocation for wireless powered communication networks. IEEE Transactions on Wireless Communications,15(3), 2312–2327.CrossRef
Metadata
Title
Energy efficiency resource allocation based on spectrum-power tradeoff in distributed satellite cluster network
Authors
Weilong Wang
Jun Wei
Shanghong Zhao
Yongjun Li
Yongxing Zheng
Publication date
04-05-2020
Publisher
Springer US
Published in
Wireless Networks / Issue 6/2020
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-020-02349-5

Other articles of this Issue 6/2020

Wireless Networks 6/2020 Go to the issue