Skip to main content
Top
Published in: Wireless Networks 6/2019

24-03-2018

Energy efficient joint user scheduling and transmit beamforming in downlink DAS

Authors: Yue Wang, Jilei Yan, Dandi Li, Zhenfang Shi, Yantao Guo, Wei Wu

Published in: Wireless Networks | Issue 6/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper studies the energy efficient joint user scheduling and transmit beamforming in the downlink of a single-cell distributed antenna system. Due to the distributed nature of antenna units, traditional power consumption model cannot be applied without the backhauling power taken into account. Therefore, under the constraints of the minimum rate requirement of each user and the transmit power budget of each distributed antenna unit, we maximize the system energy efficiency through making a tradeoff between the transmitting power and the backhauling power. By employing the parametric equivalence method to deal with the fractional objective and the \(\ell _1\)-norm relaxation method to cope with the user scheduling problem, the energy efficiency maximization is turned into a standard difference of convex program and then solved via the successive convex approximation method. Finally, the optimal sparse transmit beamforming vectors are obtained during the weighting factor iteration process, with the aim of minimizing the total power consumption while maintaining the achieved rate of each user. Extensive simulations are conducted to demonstrate the effectiveness of proposed scheme. Simulation results show that energy efficiency can benefit from not only the user scheduling but also the transmit beamforming optimization.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Saleh, A. A. M., Rustako, A. J., & Roman, R. S. (1987). Distributed antennas for indoor radio communications. IEEE Transactions on Communications, 35(12), 1245–1251.CrossRef Saleh, A. A. M., Rustako, A. J., & Roman, R. S. (1987). Distributed antennas for indoor radio communications. IEEE Transactions on Communications, 35(12), 1245–1251.CrossRef
2.
go back to reference Li, H. M., Hajipour, J., Attar, A., & Leung, V. C. M. (2011). Efficient HetNet implementation using broadband wireless access with fiber-connected massively distributed antennas architecture. IEEE Wireless Communications, 18(3), 72–78.CrossRef Li, H. M., Hajipour, J., Attar, A., & Leung, V. C. M. (2011). Efficient HetNet implementation using broadband wireless access with fiber-connected massively distributed antennas architecture. IEEE Wireless Communications, 18(3), 72–78.CrossRef
3.
go back to reference Attar, A., Li, H. M., & Leung, V. C. M. (2011). Green last mile: How fiber-connected massively distributed antenna systems can save energy. IEEE Wireless Communications, 18(5), 66–74.CrossRef Attar, A., Li, H. M., & Leung, V. C. M. (2011). Green last mile: How fiber-connected massively distributed antenna systems can save energy. IEEE Wireless Communications, 18(5), 66–74.CrossRef
4.
go back to reference Hong, X. M., Jie, Y., Wang, C. X., et al. (2013). Energy-spectral efficiency trade-off in virtual MIMO cellular systems. IEEE Journal on Selected Areas in Communications, 31(10), 2128–2140.CrossRef Hong, X. M., Jie, Y., Wang, C. X., et al. (2013). Energy-spectral efficiency trade-off in virtual MIMO cellular systems. IEEE Journal on Selected Areas in Communications, 31(10), 2128–2140.CrossRef
5.
go back to reference Cong, X., Li, G. Y., Zhang, S. Q., et al. (2011). Energy- and spectral-efficiency tradeoff in downlink OFDMA networks. IEEE Transactions on Wireless Communications, 10(11), 3874–3886.CrossRef Cong, X., Li, G. Y., Zhang, S. Q., et al. (2011). Energy- and spectral-efficiency tradeoff in downlink OFDMA networks. IEEE Transactions on Wireless Communications, 10(11), 3874–3886.CrossRef
6.
go back to reference Yang, G. R., Guo, J. L., Liu, G., & Gao, S. S. (2016). A cooperation method of mobile ad hoc network nodes based on energy efficiency. Radio Engineering, 46(5), 5–8. Yang, G. R., Guo, J. L., Liu, G., & Gao, S. S. (2016). A cooperation method of mobile ad hoc network nodes based on energy efficiency. Radio Engineering, 46(5), 5–8.
7.
go back to reference da Silva, M. Marques, & Monteiro, F. A. (2014). MIMO processing for 4G and beyond: Fundamentals and evolution. Boca Raton: CRC Press Auerbach Publications. da Silva, M. Marques, & Monteiro, F. A. (2014). MIMO processing for 4G and beyond: Fundamentals and evolution. Boca Raton: CRC Press Auerbach Publications.
8.
go back to reference Jiang, D. D., Xu, Z. Z., Li, W. P., Yao, C. P., Lv, Z. H., & Li, T. (2016). An energy-efficient multicast algorithm with maximum network throughput in multi-hop wireless networks. Journal of Communications and Networks, 18(5), 713–724.CrossRef Jiang, D. D., Xu, Z. Z., Li, W. P., Yao, C. P., Lv, Z. H., & Li, T. (2016). An energy-efficient multicast algorithm with maximum network throughput in multi-hop wireless networks. Journal of Communications and Networks, 18(5), 713–724.CrossRef
9.
go back to reference Ren, H., Liu, N., & Pan, C. H. (2016). Energy efficient transmission for multicast services in MISO distributed antenna systems. IEEE Communications Letters, 20(4), 756–759.CrossRef Ren, H., Liu, N., & Pan, C. H. (2016). Energy efficient transmission for multicast services in MISO distributed antenna systems. IEEE Communications Letters, 20(4), 756–759.CrossRef
10.
go back to reference Kim, H., Li, R. R., Song, C., Lee, K. J., & Lee, I. (2015). Optimal power allocation scheme for energy efficiency maximization in distributed antenna systems. IEEE Transactions on Communications, 63(2), 431–440.CrossRef Kim, H., Li, R. R., Song, C., Lee, K. J., & Lee, I. (2015). Optimal power allocation scheme for energy efficiency maximization in distributed antenna systems. IEEE Transactions on Communications, 63(2), 431–440.CrossRef
11.
go back to reference Wang, J., Feng, W., Chen, Y., & Zhou, S. D. (2016). Energy efficient power allocation for multicell distributed antenna systems. IEEE Communications Letters, 29(1), 177–180.CrossRef Wang, J., Feng, W., Chen, Y., & Zhou, S. D. (2016). Energy efficient power allocation for multicell distributed antenna systems. IEEE Communications Letters, 29(1), 177–180.CrossRef
12.
go back to reference Kim, H., Park, E., Park, H., & Lee, I. (2013). Beamforming and power allocation designs for energy efficiency maximization in MISO distributed antenna systems. IEEE Communications Letters, 17(11), 2100–2103.CrossRef Kim, H., Park, E., Park, H., & Lee, I. (2013). Beamforming and power allocation designs for energy efficiency maximization in MISO distributed antenna systems. IEEE Communications Letters, 17(11), 2100–2103.CrossRef
13.
go back to reference He, C. L., Sheng, B., Zhu, P. C., & You, X. H. (2012). Energy efficiency and spectral efficiency tradeoff in downlink distributed antenna systems. IEEE Wireless Communications Letters, 1(3), 153–156.CrossRef He, C. L., Sheng, B., Zhu, P. C., & You, X. H. (2012). Energy efficiency and spectral efficiency tradeoff in downlink distributed antenna systems. IEEE Wireless Communications Letters, 1(3), 153–156.CrossRef
14.
go back to reference He, C. L., Sheng, B., Zhu, P. C., You, X. H., & Li, Y. (2013). Energy- and spectral-efficiency tradeoff for distributed antenna systems with proportional fairness. IEEE Journal on Selected Areas in Communications, 31(5), 894–902.CrossRef He, C. L., Sheng, B., Zhu, P. C., You, X. H., & Li, Y. (2013). Energy- and spectral-efficiency tradeoff for distributed antenna systems with proportional fairness. IEEE Journal on Selected Areas in Communications, 31(5), 894–902.CrossRef
15.
go back to reference Isheden, C., & Fettweis, G. P. (2010). Energy-efficient multi-carrier link adaptation with sum rate dependent circuit power. In Procedings of IEEE GlobeCom. Isheden, C., & Fettweis, G. P. (2010). Energy-efficient multi-carrier link adaptation with sum rate dependent circuit power. In Procedings of IEEE GlobeCom.
16.
go back to reference Xiao, X., Tao, X. M., & Lu, J. H. (2013). QoS-aware energy-efficient radio resource scheduling in multi-user OFDMA systems. IEEE Communications Letters, 17(1), 75–78.CrossRef Xiao, X., Tao, X. M., & Lu, J. H. (2013). QoS-aware energy-efficient radio resource scheduling in multi-user OFDMA systems. IEEE Communications Letters, 17(1), 75–78.CrossRef
17.
go back to reference Ng, D. W. K., Lo, E. S., & Schober, R. (2012). Energy-efficient resource allocation in OFDMA systems with large numbers of base station antennas. IEEE Transactions on Wireless Communications, 11(9), 3292–3304.CrossRef Ng, D. W. K., Lo, E. S., & Schober, R. (2012). Energy-efficient resource allocation in OFDMA systems with large numbers of base station antennas. IEEE Transactions on Wireless Communications, 11(9), 3292–3304.CrossRef
18.
go back to reference He, C. L., Li, G. Y., Zheng, F., et al. (2014). Energy-efficient resource allocation in OFDM systems with distributed antennas. IEEE Transactions on Vehicular Technology, 63(3), 1223–1231.CrossRef He, C. L., Li, G. Y., Zheng, F., et al. (2014). Energy-efficient resource allocation in OFDM systems with distributed antennas. IEEE Transactions on Vehicular Technology, 63(3), 1223–1231.CrossRef
19.
go back to reference Zhu, H. L., & Wang, J. Z. (2013). Resource allocation in OFDMA-based distributed antenna systems. In Proceedings of IEEE ICCC (pp. 565–570). Zhu, H. L., & Wang, J. Z. (2013). Resource allocation in OFDMA-based distributed antenna systems. In Proceedings of IEEE ICCC (pp. 565–570).
20.
go back to reference Kim, H., Lee, S. R., Lee, K. J., et al. (2012). Transmission schemes based on sum rate analysis in distributed antenna systems. IEEE Transactions on Wireless Communications, 11(3), 1201–1209.CrossRef Kim, H., Lee, S. R., Lee, K. J., et al. (2012). Transmission schemes based on sum rate analysis in distributed antenna systems. IEEE Transactions on Wireless Communications, 11(3), 1201–1209.CrossRef
21.
go back to reference Lei, Z., Ji, Y. S., & Yang, K. (2012). Energy efficient resource allocation in mobile networks with distributed antenna transmission. Mobile Networks and Applications, 17, 36–44.CrossRef Lei, Z., Ji, Y. S., & Yang, K. (2012). Energy efficient resource allocation in mobile networks with distributed antenna transmission. Mobile Networks and Applications, 17, 36–44.CrossRef
23.
go back to reference Arnold, O., Richter, F., & Fettweis, G. et al. (2010). Power consumption modeling of different base station types in heterogeneous cellular networks. In Proceedings future network and mobile summit (pp. 1–8). Arnold, O., Richter, F., & Fettweis, G. et al. (2010). Power consumption modeling of different base station types in heterogeneous cellular networks. In Proceedings future network and mobile summit (pp. 1–8).
24.
go back to reference Tombaz, S., Monti, P., & Wang, K. et al. (2011). Impact of backhauling power consumption on the deployment of heterogeneous mobile networks. In Proceedings IEEE GLOBECOM (pp. 1–5). Tombaz, S., Monti, P., & Wang, K. et al. (2011). Impact of backhauling power consumption on the deployment of heterogeneous mobile networks. In Proceedings IEEE GLOBECOM (pp. 1–5).
25.
go back to reference Bjornson, E., Sanguinetti, L., Hoydis, J., & Debbah, M. (2015). Optimal design of energy-efficient multi-user MIMO systems: Is massive MIMO the answer? IEEE Transactions on Wireless Communications, 14(6), 3059–3075.CrossRef Bjornson, E., Sanguinetti, L., Hoydis, J., & Debbah, M. (2015). Optimal design of energy-efficient multi-user MIMO systems: Is massive MIMO the answer? IEEE Transactions on Wireless Communications, 14(6), 3059–3075.CrossRef
26.
go back to reference Mohammed, S. (2014). Impact of transceiver power consumption on the energy efficiency of zero-forcing detector in massive MIMO systems. IEEE Transactions on Communications, 62(11), 3874–3890.CrossRef Mohammed, S. (2014). Impact of transceiver power consumption on the energy efficiency of zero-forcing detector in massive MIMO systems. IEEE Transactions on Communications, 62(11), 3874–3890.CrossRef
27.
go back to reference Li, C., Zhang, J., & Letaief, K. B. (2014). Throughput and energy efficiency analysis of small cell networks with multi-antenna base stations. IEEE Transactions on Wireless Communications, 13(5), 2505–2517.CrossRef Li, C., Zhang, J., & Letaief, K. B. (2014). Throughput and energy efficiency analysis of small cell networks with multi-antenna base stations. IEEE Transactions on Wireless Communications, 13(5), 2505–2517.CrossRef
28.
go back to reference Yan, J. L., Wang, Y., Yang, G. R., Guo, Y. T., & Wu, W. (2016). Energy efficient resource allocation in orthogonal frequency division multiple access-based distributed antenna systems. IET Communications, 10(10), 1214–1220.CrossRef Yan, J. L., Wang, Y., Yang, G. R., Guo, Y. T., & Wu, W. (2016). Energy efficient resource allocation in orthogonal frequency division multiple access-based distributed antenna systems. IET Communications, 10(10), 1214–1220.CrossRef
29.
go back to reference Matskani, E., Sidiropoulos, N. D., Luo, Z. Q., & Tassiulas, L. (2008). Convex approximation techniques for joint multiuser downlink beamforming and admission control. IEEE Transactions on Wireless Communications, 7(7), 2682–2693.CrossRef Matskani, E., Sidiropoulos, N. D., Luo, Z. Q., & Tassiulas, L. (2008). Convex approximation techniques for joint multiuser downlink beamforming and admission control. IEEE Transactions on Wireless Communications, 7(7), 2682–2693.CrossRef
30.
go back to reference Derrick, W. K. N., Ernest, S. L., & Robert, S. (2012). Energy-efficient resource allocation in OFDMA systems with large numbers of base station antennas. IEEE Transactions on Wireless Communications, 11(9), 3292–3304.CrossRef Derrick, W. K. N., Ernest, S. L., & Robert, S. (2012). Energy-efficient resource allocation in OFDMA systems with large numbers of base station antennas. IEEE Transactions on Wireless Communications, 11(9), 3292–3304.CrossRef
31.
go back to reference Kha, H. H., Tuan, H. D., & Nguyen, H. H. (2012). Fast global optimal power allocation in wireless networks by local D.C. programming. IEEE Transactions on Wireless Communications, 11(2), 510–515.CrossRef Kha, H. H., Tuan, H. D., & Nguyen, H. H. (2012). Fast global optimal power allocation in wireless networks by local D.C. programming. IEEE Transactions on Wireless Communications, 11(2), 510–515.CrossRef
34.
go back to reference Luo, Z. Q., Ma, W. K., So, A. M. C., et al. (2010). Semidefinite relaxation of quadratic optimization problems. IEEE Signal Processing Magazine, 27(3), 20–34.CrossRef Luo, Z. Q., Ma, W. K., So, A. M. C., et al. (2010). Semidefinite relaxation of quadratic optimization problems. IEEE Signal Processing Magazine, 27(3), 20–34.CrossRef
35.
go back to reference Candes, E. J., Wakin, M. B., & Boyd, S. P. (2008). Enhancing sparsity by reweighted l1 minimization. Journal of Fourier Analysis and Applications, 14(5), 877–905.MathSciNetCrossRefMATH Candes, E. J., Wakin, M. B., & Boyd, S. P. (2008). Enhancing sparsity by reweighted l1 minimization. Journal of Fourier Analysis and Applications, 14(5), 877–905.MathSciNetCrossRefMATH
36.
go back to reference Zhao, J., Quek, T. Q. S., & Lei, Z. D. (2013). Coordinated multipoint transmission with limited backhaul data transfer. IEEE Transactions on Wireless Communications, 12(6), 2762–2775.CrossRef Zhao, J., Quek, T. Q. S., & Lei, Z. D. (2013). Coordinated multipoint transmission with limited backhaul data transfer. IEEE Transactions on Wireless Communications, 12(6), 2762–2775.CrossRef
37.
38.
go back to reference Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press.CrossRefMATH Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press.CrossRefMATH
39.
go back to reference Liu, Y. F., Dai, Y. H., & Luo, Z. Q. (2011). Coordinated beamforming for MISO interference channel: Complexity analysis and efficient algorithms. IEEE Transactions on Signal Processing, 59(3), 1142–1157.MathSciNetCrossRefMATH Liu, Y. F., Dai, Y. H., & Luo, Z. Q. (2011). Coordinated beamforming for MISO interference channel: Complexity analysis and efficient algorithms. IEEE Transactions on Signal Processing, 59(3), 1142–1157.MathSciNetCrossRefMATH
Metadata
Title
Energy efficient joint user scheduling and transmit beamforming in downlink DAS
Authors
Yue Wang
Jilei Yan
Dandi Li
Zhenfang Shi
Yantao Guo
Wei Wu
Publication date
24-03-2018
Publisher
Springer US
Published in
Wireless Networks / Issue 6/2019
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-018-1714-3

Other articles of this Issue 6/2019

Wireless Networks 6/2019 Go to the issue