Skip to main content
Top

2017 | OriginalPaper | Chapter

Energy Harvesting from Crystalline and Conductive Polymer Composites

Authors : Aravind Kumar, Shaikh Faruque Ali, A. Arockiarajan

Published in: Smart Polymer Nanocomposites

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Modern electronic devices require less energy on-board and could be powered by energy harvested from the environment. Mechanical vibrations are attractive sources for energy harvesting due to their high availability in technical environments. Among the various mechanisms available to convert mechanical energy into electrical energy, piezoelectric transduction offers high power density at microenergy scales. In piezoelectric energy harvesters, the amount of electrical energy harvested directly depends on the strain undergone by the transducer. Commonly used piezoelectric transducers are made of perovskite ceramics such as PZT and are brittle. This limits the maximum allowable strain in the harvester and consequently the power harvested. In such cases, electroactive polymers act as viable alternatives due to their flexibility. Energy harvesting from conductive and crystalline electroactive polymers is explored in this chapter. Crystalline polymers such as polyurethane and semicrystalline polymers such as PVDF are commonly used in energy harvesting devices owing to their flexibility, affordability, and good electromechanical coupling properties. This chapter begins with a brief account on the material properties of PVDF and polyurethane. Subsequently, design of energy harvesters based on these materials is elucidated. A short note on energy harvesting from crystalline biopolymers such as cellulose nanocrystals is also included therein. Such harvesters are attractive as they are environment friendly and biocompatible. Among conductive polymer composites, harvesters based on polyaniline and carbon nanotubes are described. A comparison between the harvesting capabilities of different electroactive polymers and the challenges faced are discussed to draw an overall picture on energy harvesting from electroactive polymers.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kim H, Tadesse Y, Priya S (2009) Piezoelectric energy harvesting. Energy harvesting technologies. Springer, US, pp 3–39CrossRef Kim H, Tadesse Y, Priya S (2009) Piezoelectric energy harvesting. Energy harvesting technologies. Springer, US, pp 3–39CrossRef
2.
go back to reference Qi Y, Jafferis NT, Lyons K et al (2010) Piezoelectric ribbons printed onto rubber for flexible energy conversion. Nano Lett 10:524–528CrossRef Qi Y, Jafferis NT, Lyons K et al (2010) Piezoelectric ribbons printed onto rubber for flexible energy conversion. Nano Lett 10:524–528CrossRef
3.
go back to reference Inman DJ, Erturk A, Inman DJ (2011) Piezoelectric energy harvesting. Wiley, USA Inman DJ, Erturk A, Inman DJ (2011) Piezoelectric energy harvesting. Wiley, USA
4.
go back to reference Mane P, Jingsi Xie J, Leang KK, Mossi K (2011) Cyclic energy harvesting from pyroelectric materials. IEEE Trans Ultrason Ferroelectr Freq Control 58:10–17CrossRef Mane P, Jingsi Xie J, Leang KK, Mossi K (2011) Cyclic energy harvesting from pyroelectric materials. IEEE Trans Ultrason Ferroelectr Freq Control 58:10–17CrossRef
5.
go back to reference Bowen CR, Kim HA, Weaver PM, Dunn S (2014) Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy Environ Sci 7:25 Bowen CR, Kim HA, Weaver PM, Dunn S (2014) Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy Environ Sci 7:25
6.
go back to reference Erturk A, Inman DJ (2009) An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Mater Struct 18:025009CrossRef Erturk A, Inman DJ (2009) An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Mater Struct 18:025009CrossRef
7.
go back to reference Friswell MI, Ali SF, Bilgen O et al (2012) Non-linear piezoelectric vibration energy harvesting from a vertical cantilever beam with tip mass. J Intell Mater Syst Struct 23:1505–1521CrossRef Friswell MI, Ali SF, Bilgen O et al (2012) Non-linear piezoelectric vibration energy harvesting from a vertical cantilever beam with tip mass. J Intell Mater Syst Struct 23:1505–1521CrossRef
8.
go back to reference Ma TW, Zhang H, Xu NS (2012) A novel parametrically excited non-linear energy harvester. Mech Syst Signal Process 28:323–332CrossRef Ma TW, Zhang H, Xu NS (2012) A novel parametrically excited non-linear energy harvester. Mech Syst Signal Process 28:323–332CrossRef
9.
go back to reference Malaji PV, Ali SF (2015) Analysis of energy harvesting from multiple pendulums with and without mechanical coupling. Eur Phys J Spec Top 224:2823–2838CrossRef Malaji PV, Ali SF (2015) Analysis of energy harvesting from multiple pendulums with and without mechanical coupling. Eur Phys J Spec Top 224:2823–2838CrossRef
10.
go back to reference Zhou S, Cao J, Inman DJ et al (2014) Broadband tristable energy harvester: modeling and experiment verification. Appl Energy 133:33–39CrossRef Zhou S, Cao J, Inman DJ et al (2014) Broadband tristable energy harvester: modeling and experiment verification. Appl Energy 133:33–39CrossRef
11.
12.
go back to reference Erturk A, Hoffmann J, Inman DJ (2009) A piezomagnetoelastic structure for broadband vibration energy harvesting. Appl Phys Lett 94:254102CrossRef Erturk A, Hoffmann J, Inman DJ (2009) A piezomagnetoelastic structure for broadband vibration energy harvesting. Appl Phys Lett 94:254102CrossRef
13.
go back to reference Williams CB, Yates RB (1995) Analysis of a micro-electric generator for microsystems. Proc Int Solid-State Sens Actuators Conf TRANSDUCERS ’95 1:8–11 Williams CB, Yates RB (1995) Analysis of a micro-electric generator for microsystems. Proc Int Solid-State Sens Actuators Conf TRANSDUCERS ’95 1:8–11
14.
go back to reference Kim SG, Priya S, Kanno I (2012) Piezoelectric MEMS for energy harvesting. MRS Bull 37:1039–1050CrossRef Kim SG, Priya S, Kanno I (2012) Piezoelectric MEMS for energy harvesting. MRS Bull 37:1039–1050CrossRef
15.
go back to reference Leo DJ (2007) Engineering analysis of smart material systems. Wiley, USA Leo DJ (2007) Engineering analysis of smart material systems. Wiley, USA
16.
go back to reference Bar-Cohen Y (2004) Electroactive polymer (EAP) actuators as artificial muscles: reality, potential, and challenges. SPIE Press, USA Bar-Cohen Y (2004) Electroactive polymer (EAP) actuators as artificial muscles: reality, potential, and challenges. SPIE Press, USA
17.
go back to reference Kornbluh RD, Flamm DS, Prahlad H, et al (2003) Shape control of large lightweight mirrors with dielectric elastomer actuation. In: Bar-Cohen Y (ed) International society for optics and photonics, p 143 Kornbluh RD, Flamm DS, Prahlad H, et al (2003) Shape control of large lightweight mirrors with dielectric elastomer actuation. In: Bar-Cohen Y (ed) International society for optics and photonics, p 143
18.
go back to reference Krishen K (2009) Space applications for ionic polymer-metal composite sensors, actuators, and artificial muscles. Acta Astronaut 64:1160–1166CrossRef Krishen K (2009) Space applications for ionic polymer-metal composite sensors, actuators, and artificial muscles. Acta Astronaut 64:1160–1166CrossRef
19.
go back to reference Menon C, Carpi F, De Rossi D (2009) Concept design of novel bio-inspired distributed actuators for space applications. Acta Astronaut 65:825–833CrossRef Menon C, Carpi F, De Rossi D (2009) Concept design of novel bio-inspired distributed actuators for space applications. Acta Astronaut 65:825–833CrossRef
20.
go back to reference Shahinpoor M, Kim KJ, R BP, et al (2005) Ionic polymer–metal composites: IV. Industrial and medical applications. Smart Mater Struct 14:197–214 Shahinpoor M, Kim KJ, R BP, et al (2005) Ionic polymer–metal composites: IV. Industrial and medical applications. Smart Mater Struct 14:197–214
21.
go back to reference Wax SG, Sands RR (1999) Electroactive polymer actuators and devices. In: Bar-Cohen Y (ed) International society for optics and photonics, pp 2–10 Wax SG, Sands RR (1999) Electroactive polymer actuators and devices. In: Bar-Cohen Y (ed) International society for optics and photonics, pp 2–10
22.
go back to reference Kovacs G, Lochmatter P, Wissler M et al (2007) An arm wrestling robot driven by dielectric elastomer actuators. Smart Mater Struct 16:S306–S317CrossRef Kovacs G, Lochmatter P, Wissler M et al (2007) An arm wrestling robot driven by dielectric elastomer actuators. Smart Mater Struct 16:S306–S317CrossRef
23.
go back to reference Smith RC (2005) Smart material systems. Society for Industrial and Applied Mathematics Smith RC (2005) Smart material systems. Society for Industrial and Applied Mathematics
24.
go back to reference Jean-Mistral C, Basrour S, Chaillout J-J (2010) Comparison of electroactive polymers for energy scavenging applications. Smart Mater Struct 19:085012CrossRef Jean-Mistral C, Basrour S, Chaillout J-J (2010) Comparison of electroactive polymers for energy scavenging applications. Smart Mater Struct 19:085012CrossRef
25.
go back to reference Takashima W, Uesugi T, Fukui M et al (1997) Mechanochemoelectrical effect of polyaniline film. Synth Met 85:1395–1396CrossRef Takashima W, Uesugi T, Fukui M et al (1997) Mechanochemoelectrical effect of polyaniline film. Synth Met 85:1395–1396CrossRef
26.
go back to reference Vinogradov A (2002) Piezoelectricity in Polymers. In: Encyclopedia of smart materials. Wiley, USA Vinogradov A (2002) Piezoelectricity in Polymers. In: Encyclopedia of smart materials. Wiley, USA
27.
go back to reference Sessler GM (1982) Chapter 6—polymeric electrets. In: electrical properties of polymers, pp 241–284 Sessler GM (1982) Chapter 6—polymeric electrets. In: electrical properties of polymers, pp 241–284
28.
go back to reference Erturk A, Inman DJ (2009) Electromechanical modeling of cantilevered piezoelectric energy harvesters for persistent base motions. Energ Harvesting Technol. Springer, US, pp 41–77CrossRef Erturk A, Inman DJ (2009) Electromechanical modeling of cantilevered piezoelectric energy harvesters for persistent base motions. Energ Harvesting Technol. Springer, US, pp 41–77CrossRef
29.
go back to reference Roundy S, Wright PK, Rabaey J (2003) A study of low level vibrations as a power source for wireless sensor nodes. Comput Commun 26:1131–1144CrossRef Roundy S, Wright PK, Rabaey J (2003) A study of low level vibrations as a power source for wireless sensor nodes. Comput Commun 26:1131–1144CrossRef
30.
go back to reference Twiefel J, Westermann H (2013) Survey on broadband techniques for vibration energy harvesting. J Intell Mater Syst Struct 24:1291–1302CrossRef Twiefel J, Westermann H (2013) Survey on broadband techniques for vibration energy harvesting. J Intell Mater Syst Struct 24:1291–1302CrossRef
31.
go back to reference Tang L, Yang Y, Soh CK (2010) Toward broadband vibration-based energy harvesting. J Intell Mater Syst Struct 21:1867–1897CrossRef Tang L, Yang Y, Soh CK (2010) Toward broadband vibration-based energy harvesting. J Intell Mater Syst Struct 21:1867–1897CrossRef
32.
go back to reference Granstrom J, Feenstra J, Sodano H, Farinholt K (2007) Energy harvesting from a backpack instrumented with piezoelectric shoulder straps. Smart Mater Struct 16:1810–1820CrossRef Granstrom J, Feenstra J, Sodano H, Farinholt K (2007) Energy harvesting from a backpack instrumented with piezoelectric shoulder straps. Smart Mater Struct 16:1810–1820CrossRef
33.
go back to reference Rocha JG, Gonçalves LM, Rocha PF et al (2010) Energy harvesting from piezoelectric materials fully integrated in footwear. IEEE Trans Ind Electron 57:813–819CrossRef Rocha JG, Gonçalves LM, Rocha PF et al (2010) Energy harvesting from piezoelectric materials fully integrated in footwear. IEEE Trans Ind Electron 57:813–819CrossRef
34.
go back to reference Taylor GW, Burns JR, Kammann SM et al (2001) The energy harvesting Eel: A small subsurface ocean/river power generator. IEEE J Ocean Eng 26:539–547CrossRef Taylor GW, Burns JR, Kammann SM et al (2001) The energy harvesting Eel: A small subsurface ocean/river power generator. IEEE J Ocean Eng 26:539–547CrossRef
35.
go back to reference Allen JJ, Smits AJ (2001) Energ Harvesting Eel J Fluids Struct 15:629–640CrossRef Allen JJ, Smits AJ (2001) Energ Harvesting Eel J Fluids Struct 15:629–640CrossRef
36.
go back to reference Hansen BJ, Liu Y, Yang R, Wang ZL (2010) Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy. ACS Nano 4:3647–3652CrossRef Hansen BJ, Liu Y, Yang R, Wang ZL (2010) Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy. ACS Nano 4:3647–3652CrossRef
37.
go back to reference Yang R, Qin Y, Dai L, Wang ZL (2009) Power generation with laterally packaged piezoelectric fine wires. Nat Nanotechnol 4:34–39CrossRef Yang R, Qin Y, Dai L, Wang ZL (2009) Power generation with laterally packaged piezoelectric fine wires. Nat Nanotechnol 4:34–39CrossRef
38.
go back to reference Sorayani Bafqi MS, Bagherzadeh R, Latifi M (2015) Fabrication of composite PVDF-ZnO nanofiber mats by electrospinning for energy scavenging application with enhanced efficiency. J Polym Res 22:130CrossRef Sorayani Bafqi MS, Bagherzadeh R, Latifi M (2015) Fabrication of composite PVDF-ZnO nanofiber mats by electrospinning for energy scavenging application with enhanced efficiency. J Polym Res 22:130CrossRef
39.
go back to reference Fukada E (1968) Piezoelectricity as a fundamental property of wood. Wood Sci Technol 2:299–307CrossRef Fukada E (1968) Piezoelectricity as a fundamental property of wood. Wood Sci Technol 2:299–307CrossRef
40.
go back to reference Csoka L, Hoeger IC, Rojas OJ et al (2012) Piezoelectric effect of cellulose nanocrystals thin films. ACS Macro Lett 1:867–870CrossRef Csoka L, Hoeger IC, Rojas OJ et al (2012) Piezoelectric effect of cellulose nanocrystals thin films. ACS Macro Lett 1:867–870CrossRef
41.
go back to reference Mahadeva SK, Walus K, Stoeber B (2014) Piezoelectric paper fabricated via nanostructured barium titanate functionalization of wood cellulose fibers. ACS Appl Mater Interfaces 6:7547–7553CrossRef Mahadeva SK, Walus K, Stoeber B (2014) Piezoelectric paper fabricated via nanostructured barium titanate functionalization of wood cellulose fibers. ACS Appl Mater Interfaces 6:7547–7553CrossRef
42.
go back to reference Alam MM, Mandal D (2016) Native cellulose microfiber-based hybrid piezoelectric generator for mechanical energy harvesting utility. ACS Appl Mater Interfaces 8:1555–1558CrossRef Alam MM, Mandal D (2016) Native cellulose microfiber-based hybrid piezoelectric generator for mechanical energy harvesting utility. ACS Appl Mater Interfaces 8:1555–1558CrossRef
43.
go back to reference Zheng Q, Zhang H, Mi H et al (2016) High-performance flexible piezoelectric nanogenerators consisting of porous cellulose nanofibril (CNF)/poly(dimethylsiloxane) (PDMS) aerogel films. Nano Energy 26:504–512CrossRef Zheng Q, Zhang H, Mi H et al (2016) High-performance flexible piezoelectric nanogenerators consisting of porous cellulose nanofibril (CNF)/poly(dimethylsiloxane) (PDMS) aerogel films. Nano Energy 26:504–512CrossRef
44.
go back to reference Liu Y, Member S, Ren KL, Hofmann HF (2005) Investigation electrostrictive polymers for energy harvesting. IEEE Trans Ultrason Ferroelectr Freq Control 52:2411–2417CrossRef Liu Y, Member S, Ren KL, Hofmann HF (2005) Investigation electrostrictive polymers for energy harvesting. IEEE Trans Ultrason Ferroelectr Freq Control 52:2411–2417CrossRef
45.
go back to reference Guyomar D, Lebrun L, Putson C et al (2009) Electrostrictive energy conversion in polyurethane nanocomposites. J Appl Phys 106:014910CrossRef Guyomar D, Lebrun L, Putson C et al (2009) Electrostrictive energy conversion in polyurethane nanocomposites. J Appl Phys 106:014910CrossRef
46.
go back to reference Lallart M, Cottinet P-J, Lebrun L et al (2010) Evaluation of energy harvesting performance of electrostrictive polymer and carbon-filled terpolymer composites. J Appl Phys 108:034901CrossRef Lallart M, Cottinet P-J, Lebrun L et al (2010) Evaluation of energy harvesting performance of electrostrictive polymer and carbon-filled terpolymer composites. J Appl Phys 108:034901CrossRef
47.
go back to reference Lebrun L, Guyomar D, Guiffard B et al (2009) The characterisation of the harvesting capabilities of an electrostrictive polymer composite. Sens Actuators A Phys 153:251–257CrossRef Lebrun L, Guyomar D, Guiffard B et al (2009) The characterisation of the harvesting capabilities of an electrostrictive polymer composite. Sens Actuators A Phys 153:251–257CrossRef
48.
go back to reference Leaver P, Cunningham MJ, Jones BE (1987) Piezoelectric polymer pressure sensors. Sens Actuators 12:225–233CrossRef Leaver P, Cunningham MJ, Jones BE (1987) Piezoelectric polymer pressure sensors. Sens Actuators 12:225–233CrossRef
49.
go back to reference Yuan Y, Zhou S, Liu Y, Tang J (2013) Nanostructured macroporous bioanode based on polyaniline-modified natural loofah sponge for high-performance microbial fuel cells. Environ Sci Technol 47:14525–14532CrossRef Yuan Y, Zhou S, Liu Y, Tang J (2013) Nanostructured macroporous bioanode based on polyaniline-modified natural loofah sponge for high-performance microbial fuel cells. Environ Sci Technol 47:14525–14532CrossRef
50.
go back to reference Wang Y, Zhang SM, Deng Y et al (2016) Flexible low-grade energy utilization devices based on high-performance thermoelectric polyaniline/tellurium nanorod hybrid films. J Mater Chem A 4:3554–3559CrossRef Wang Y, Zhang SM, Deng Y et al (2016) Flexible low-grade energy utilization devices based on high-performance thermoelectric polyaniline/tellurium nanorod hybrid films. J Mater Chem A 4:3554–3559CrossRef
51.
go back to reference Sultana A, Alam MM, Garain S et al (2015) An effective electrical throughput from PANI supplement ZnS nanorods and PDMS-based flexible piezoelectric nanogenerator for power up portable electronic devices: an alternative of MWCNT filler. ACS Appl Mater Interfaces 7:19091–19097CrossRef Sultana A, Alam MM, Garain S et al (2015) An effective electrical throughput from PANI supplement ZnS nanorods and PDMS-based flexible piezoelectric nanogenerator for power up portable electronic devices: an alternative of MWCNT filler. ACS Appl Mater Interfaces 7:19091–19097CrossRef
52.
go back to reference Antiohos D, Romano M, Chen J, Razal JM (2013) Carbon nanotubes for energy applications. In: Syntheses and applications of carbon nanotubes and their composites. InTech Antiohos D, Romano M, Chen J, Razal JM (2013) Carbon nanotubes for energy applications. In: Syntheses and applications of carbon nanotubes and their composites. InTech
53.
go back to reference Romano MS, Gambhir S, Razal JM et al (2012) Novel carbon materials for thermal energy harvesting. J Therm Anal Calorim 109:1229–1235CrossRef Romano MS, Gambhir S, Razal JM et al (2012) Novel carbon materials for thermal energy harvesting. J Therm Anal Calorim 109:1229–1235CrossRef
54.
go back to reference Hu R, Cola BA, Haram N et al (2010) Harvesting waste thermal energy using a carbon-nanotube-based thermo-electrochemical cell. Nano Lett 10:838–846CrossRef Hu R, Cola BA, Haram N et al (2010) Harvesting waste thermal energy using a carbon-nanotube-based thermo-electrochemical cell. Nano Lett 10:838–846CrossRef
55.
go back to reference Romano MS, Li N, Antiohos D et al (2013) Carbon nanotube—reduced graphene oxide composites for thermal energy harvesting applications. Adv Mater 25:6602–6606CrossRef Romano MS, Li N, Antiohos D et al (2013) Carbon nanotube—reduced graphene oxide composites for thermal energy harvesting applications. Adv Mater 25:6602–6606CrossRef
56.
go back to reference Im H, Kim T, Song H et al (2016) High-efficiency electrochemical thermal energy harvester using carbon nanotube aerogel sheet electrodes. Nat Commun 7:10600CrossRef Im H, Kim T, Song H et al (2016) High-efficiency electrochemical thermal energy harvester using carbon nanotube aerogel sheet electrodes. Nat Commun 7:10600CrossRef
57.
go back to reference Dey A, Bajpai OP, Sikder AK et al (2016) Recent advances in CNT/graphene based thermoelectric polymer nanocomposite: A proficient move towards waste energy harvesting. Renew Sustain Energy Rev 53:653–671CrossRef Dey A, Bajpai OP, Sikder AK et al (2016) Recent advances in CNT/graphene based thermoelectric polymer nanocomposite: A proficient move towards waste energy harvesting. Renew Sustain Energy Rev 53:653–671CrossRef
Metadata
Title
Energy Harvesting from Crystalline and Conductive Polymer Composites
Authors
Aravind Kumar
Shaikh Faruque Ali
A. Arockiarajan
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-50424-7_2

Premium Partners