Skip to main content
Top
Published in: Wireless Networks 3/2020

14-06-2019

Energy harvesting relay-antenna selection in cooperative MIMO/NOMA network over Rayleigh fading

Authors: Thi Anh Le, Hyung Yun Kong

Published in: Wireless Networks | Issue 3/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, a combination system of multi-antenna multiple input multiple output (MIMO) and non-orthogonal multiple access (NOMA) technologies is investigated, in which the source communicates with users using a multiple amplify-and-forward (AF) relaying network. These relay nodes are equipped with a single antenna and employ a power-splitting protocol to harvest energy from received signals, whereas the source and users are multiple-antenna nodes. In addition, two antenna-relay selection methods are considered to enhance the harvested energy at the relay including the maximum ratio transmission (MRT) and transmit antenna selection (TAS) at the source, with maximal-ratio combining at the users, these methods are compared to the performance of the random selection (RS) scheme. To evaluate the performance of the proposed system, we derive analytical expressions of the outage probability and throughput for the MRT and TAS schemes over Rayleigh fading channels, and use a Monte Carlo simulation to verify the accuracy of the analytical results. The results demonstrate the benefit of using MRT and TAS schemes, which provide a better performance than RS schemes, in a MIMO/NOMA system. Moreover, these results characterize the effects of various system parameters, such as power allocation factors, the numbers of antenna and relay nodes, power-splitting ratio, successive interference cancellation and energy-harvesting efficiency, on the system performance of two users of MIMO/NOMA. This is further compared with multiple-antenna conventional orthogonal multiple access (MIMO/OMA) schemes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
In this paper, we assumed that the EH relaying network as linear model (in assumption (vi)), thus, the conversion efficiency is a constant. For the non-linear EH model, \(\mu \) is a function of the input RF power and the output direct current power [30].
 
Literature
1.
go back to reference Ding, Z., Liu, Y., Choi, J., Sun, Q., & Elkashlan, M. (2017). Application of non-orthogonal multiple access in LTE and 5G networks. IEEE Communications Magazine, 55, 185–191.CrossRef Ding, Z., Liu, Y., Choi, J., Sun, Q., & Elkashlan, M. (2017). Application of non-orthogonal multiple access in LTE and 5G networks. IEEE Communications Magazine, 55, 185–191.CrossRef
2.
go back to reference Islam, R., Avazov, N., & Dobre, O. A. (2017). Power-domain non-orthogonal multiple access (NOMA) in 5G systems: Potentials and challenges. IEEE Communications Surveys and Tutorials, 19, 721–742.CrossRef Islam, R., Avazov, N., & Dobre, O. A. (2017). Power-domain non-orthogonal multiple access (NOMA) in 5G systems: Potentials and challenges. IEEE Communications Surveys and Tutorials, 19, 721–742.CrossRef
3.
go back to reference Dai, L., Wang, B., Yuan, Y., Han, S., Chih-Lin, I., & Wang, Z. (2015). Non-orthogonal multiple access for 5G: Solutions, challenges, opportunities, and future research trends. IEEE Communications Magazine, 53(9), 74–81.CrossRef Dai, L., Wang, B., Yuan, Y., Han, S., Chih-Lin, I., & Wang, Z. (2015). Non-orthogonal multiple access for 5G: Solutions, challenges, opportunities, and future research trends. IEEE Communications Magazine, 53(9), 74–81.CrossRef
4.
go back to reference Ding, Z., Lei, X., Karagiannidis, G. K., Schober, R., Yuan, J., & Bhargava, V. K. (2017). A survey on non-orthogonal multiple access for 5G networks: Research challenges and future trends. IEEE Journal on Selected Areas in Communications, 35, 2181–2195.CrossRef Ding, Z., Lei, X., Karagiannidis, G. K., Schober, R., Yuan, J., & Bhargava, V. K. (2017). A survey on non-orthogonal multiple access for 5G networks: Research challenges and future trends. IEEE Journal on Selected Areas in Communications, 35, 2181–2195.CrossRef
5.
go back to reference Ding, Z., Peng, M., & Poor, H. V. (2015). Cooperative non-orthogonal multiple access in 5G systems. IEEE Communication Letters, 19(8), 1462–1465.CrossRef Ding, Z., Peng, M., & Poor, H. V. (2015). Cooperative non-orthogonal multiple access in 5G systems. IEEE Communication Letters, 19(8), 1462–1465.CrossRef
6.
go back to reference Ding, Z., Fan, P., & Poor, H. V. (2015). On the impact of user pairing on NOMA. In IEEE TVT. Ding, Z., Fan, P., & Poor, H. V. (2015). On the impact of user pairing on NOMA. In IEEE TVT.
7.
go back to reference Mohammadi, M., Chalise, B. K., Hakimi, A., Mobini, Z., Suraweera, H. A., & Ding, Z. (2018). Beamforming design and power allocation for full-duplex non-orthogonal multiple access cognitive relaying. IEEE Transactions on Communications, 66, 5952–5965.CrossRef Mohammadi, M., Chalise, B. K., Hakimi, A., Mobini, Z., Suraweera, H. A., & Ding, Z. (2018). Beamforming design and power allocation for full-duplex non-orthogonal multiple access cognitive relaying. IEEE Transactions on Communications, 66, 5952–5965.CrossRef
8.
go back to reference Ding, Z., Adachi, F., & Poor, H. V. (2016). The application of MIMO to non-orthogonal multiple access. IEEE Transactions on Wireless Communications, 15(1), 537–552.CrossRef Ding, Z., Adachi, F., & Poor, H. V. (2016). The application of MIMO to non-orthogonal multiple access. IEEE Transactions on Wireless Communications, 15(1), 537–552.CrossRef
9.
go back to reference Liu, Y., Pan, G., Zhang, H., & Song, M. (2016). On the capacity comparison between MIMO-NOMA and MIMO-OMA. IEEE Accesss, 4, 2123–2129.CrossRef Liu, Y., Pan, G., Zhang, H., & Song, M. (2016). On the capacity comparison between MIMO-NOMA and MIMO-OMA. IEEE Accesss, 4, 2123–2129.CrossRef
10.
go back to reference Huang, Y., Zhang, C., Wang, J., Jing, Y., Yang, L., & You, X. (2018). Signal processing for MIMO-NOMA: Present and future challenges. arXiv:1802.00754. Huang, Y., Zhang, C., Wang, J., Jing, Y., Yang, L., & You, X. (2018). Signal processing for MIMO-NOMA: Present and future challenges. arXiv:​1802.​00754.
11.
go back to reference Paradiso, J. A., & Starner, T. (2005). Energy scavenging for mobile and wireless electronics. IEEE Pervasive Computing, 4, 18–27.CrossRef Paradiso, J. A., & Starner, T. (2005). Energy scavenging for mobile and wireless electronics. IEEE Pervasive Computing, 4, 18–27.CrossRef
12.
go back to reference Varshney, L. R. (2008). Transporting information and energy simultaneously. In Information Theory, ISIT 2008 (pp. 1612–1616). Varshney, L. R. (2008). Transporting information and energy simultaneously. In Information Theory, ISIT 2008 (pp. 1612–1616).
13.
go back to reference Nasir, A. A., & Durrani, S. (2013). Relaying protocols for wireless energy harvesting and information processing. IEEE Transactions on Wireless Communications, 12(7), 3622–3636.CrossRef Nasir, A. A., & Durrani, S. (2013). Relaying protocols for wireless energy harvesting and information processing. IEEE Transactions on Wireless Communications, 12(7), 3622–3636.CrossRef
14.
go back to reference Di, X., Xiong, K., Fan, P., & Yang, H. (2014). Simultaneous wireless information and power transfer in cooperative relay networks with rateless codes. IEEE Transactions on Vehicular Technology, 66(4), 2981–2996.CrossRef Di, X., Xiong, K., Fan, P., & Yang, H. (2014). Simultaneous wireless information and power transfer in cooperative relay networks with rateless codes. IEEE Transactions on Vehicular Technology, 66(4), 2981–2996.CrossRef
15.
go back to reference Zhou, X., Zhang, R., & Ho, C. K. (2014). Wireless information and power transfer in multiuser OFDM systems. IEEE Transactions on Wireless Communications, 13(4), 2282–2294.CrossRef Zhou, X., Zhang, R., & Ho, C. K. (2014). Wireless information and power transfer in multiuser OFDM systems. IEEE Transactions on Wireless Communications, 13(4), 2282–2294.CrossRef
16.
go back to reference Zhang, R., & Ho, C. K. (2012). MIMO broadcasting for simultaneous wireless information and power transfer. IEEE Transactions on Wireless Communications, 12(5), 1989–2001.CrossRef Zhang, R., & Ho, C. K. (2012). MIMO broadcasting for simultaneous wireless information and power transfer. IEEE Transactions on Wireless Communications, 12(5), 1989–2001.CrossRef
17.
go back to reference Liu, Y., Ding, Z., Elkashlan, M., & Poor, H. V. (2016). Cooperative non-orthogonal multiple access with simultaneous wireless information and power transfer. IEEE Journal on Selected Areas in Communications, 34, 938–953.CrossRef Liu, Y., Ding, Z., Elkashlan, M., & Poor, H. V. (2016). Cooperative non-orthogonal multiple access with simultaneous wireless information and power transfer. IEEE Journal on Selected Areas in Communications, 34, 938–953.CrossRef
18.
go back to reference Han, W., Ge, J., & Men, J. (2016). Performance analysis for NOMA energy harvesting relaying networks with transmit antenna selection and maximal-ratio combining over Nakagami-m fading. IET Communications, 10, 2687–2693.CrossRef Han, W., Ge, J., & Men, J. (2016). Performance analysis for NOMA energy harvesting relaying networks with transmit antenna selection and maximal-ratio combining over Nakagami-m fading. IET Communications, 10, 2687–2693.CrossRef
19.
go back to reference Fan, L., Zhao, N., Lei, X., Chen, Q., Yang, N., & Karagiannidis, G. K. (2018). Outage probability and optimal cache placement for multiple amplify-and-forward relay networks. IEEE Transaction on Vehicular Technology, 67(12), 12373–12378.CrossRef Fan, L., Zhao, N., Lei, X., Chen, Q., Yang, N., & Karagiannidis, G. K. (2018). Outage probability and optimal cache placement for multiple amplify-and-forward relay networks. IEEE Transaction on Vehicular Technology, 67(12), 12373–12378.CrossRef
20.
go back to reference Lao, X., Fan, L., Lei, X., Li, J., Yang, N., & Karagiannidis, G. K. (2019). Distributed secure switch-and-stay combining over correlated fading channels. IEEE Transaction on Information Forensics and Security, pp(99), 1–10. Lao, X., Fan, L., Lei, X., Li, J., Yang, N., & Karagiannidis, G. K. (2019). Distributed secure switch-and-stay combining over correlated fading channels. IEEE Transaction on Information Forensics and Security, pp(99), 1–10.
21.
go back to reference Ding, Z., Dai, H., & Poor, H. V. (2016). Relay selection for cooperative NOMA. IEEE Wireless Communications Letters, 5(4), 416–419.CrossRef Ding, Z., Dai, H., & Poor, H. V. (2016). Relay selection for cooperative NOMA. IEEE Wireless Communications Letters, 5(4), 416–419.CrossRef
22.
go back to reference Mobini, Z., Mohammadi, M., Suraweera, H. A., & Ding, Z. (2017). Full-duplex multi-antenna relay assisted cooperative non-orthogonal multiple access. In Proceedings of IEEE Global Communications Conference (GLOBECOM 2017), Singapore (pp. 1–7). Mobini, Z., Mohammadi, M., Suraweera, H. A., & Ding, Z. (2017). Full-duplex multi-antenna relay assisted cooperative non-orthogonal multiple access. In Proceedings of IEEE Global Communications Conference (GLOBECOM 2017), Singapore (pp. 1–7).
23.
go back to reference Mohammadi, M., Mobini, Z., Suraweera, H. A., & Ding, Z. (2018). Antenna selection in full-duplex cooperative NOMA systems. In Proceedings of IEEE International Conference on Communications (ICC 2018), Kansas City, MO, USA (pp. 1–6). Mohammadi, M., Mobini, Z., Suraweera, H. A., & Ding, Z. (2018). Antenna selection in full-duplex cooperative NOMA systems. In Proceedings of IEEE International Conference on Communications (ICC 2018), Kansas City, MO, USA (pp. 1–6).
24.
go back to reference Ikki, S., & Ahmed, M. (2010). On the performance of cooperative-diversity networks with the Nth best relay selection scheme. IEEE Transactions on Wireless Communications, 58, 3062–3069. CrossRef Ikki, S., & Ahmed, M. (2010). On the performance of cooperative-diversity networks with the Nth best relay selection scheme. IEEE Transactions on Wireless Communications, 58, 3062–3069. CrossRef
25.
go back to reference Khafagy, M., Ismail, A., Alouini, M. S., & Assa, S. (2015). Efficient cooperative protocols for full-duplex relaying over Nakagami-m fading channels. IEEE Transactions on Wireless Communications, 14, 3456–3470.CrossRef Khafagy, M., Ismail, A., Alouini, M. S., & Assa, S. (2015). Efficient cooperative protocols for full-duplex relaying over Nakagami-m fading channels. IEEE Transactions on Wireless Communications, 14, 3456–3470.CrossRef
26.
go back to reference Ding, H., Ge, J., da Costa, D. B., et al. (2011). Asymptotic analysis of cooperative diversity systems with relay selection in a spectrum-sharing scenario. IEEE Transactions on Vehicular Technology, 60, 457–472.CrossRef Ding, H., Ge, J., da Costa, D. B., et al. (2011). Asymptotic analysis of cooperative diversity systems with relay selection in a spectrum-sharing scenario. IEEE Transactions on Vehicular Technology, 60, 457–472.CrossRef
27.
go back to reference Tse, D., & Viswanath, P. (2004). Fundamentals of wireless communication. Cambridge University Press Tse, D., & Viswanath, P. (2004). Fundamentals of wireless communication. Cambridge University Press
28.
go back to reference Gradshteyn, I. S., & Ryzhik, I. M. (2014). Table of intergrals, series, and products (8th ed.). New York: Academic Press. Gradshteyn, I. S., & Ryzhik, I. M. (2014). Table of intergrals, series, and products (8th ed.). New York: Academic Press.
29.
go back to reference Olver, F. W. J., Lozier, D. W., Boisvert, R. F., & Clark, C. W. (2010). NIST handbook of mathematical functions. New York: Cambridge University Press.MATH Olver, F. W. J., Lozier, D. W., Boisvert, R. F., & Clark, C. W. (2010). NIST handbook of mathematical functions. New York: Cambridge University Press.MATH
30.
go back to reference Valenta, C., & Durgin, G. (2014). Harvesting wireless power: Survey of energy-harvester conversion efficiency in far-field, wireless power transfer systems. IEEE Microwave Magazine, 15(4), 108–120.CrossRef Valenta, C., & Durgin, G. (2014). Harvesting wireless power: Survey of energy-harvester conversion efficiency in far-field, wireless power transfer systems. IEEE Microwave Magazine, 15(4), 108–120.CrossRef
Metadata
Title
Energy harvesting relay-antenna selection in cooperative MIMO/NOMA network over Rayleigh fading
Authors
Thi Anh Le
Hyung Yun Kong
Publication date
14-06-2019
Publisher
Springer US
Published in
Wireless Networks / Issue 3/2020
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-019-02051-1

Other articles of this Issue 3/2020

Wireless Networks 3/2020 Go to the issue