Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 8/2019

14-03-2019

Energy transfer-enhanced external power conversion efficiency in blended polymeric thin film solar devices

Authors: Nazir Mustapha, Mohamad S. AlSalhi, Saradh Prasad

Published in: Journal of Materials Science: Materials in Electronics | Issue 8/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, the spectral and electrical properties of a conjugated polymer poly [(9, 9-dioctyl-2, 7-divinylenefluorenylene)-alt-co-(1, 4-phenylene)] (PFO–MEH–PPV) with poly[3-(2-ethyl-isocyanato-octadecanyl) thiophene] (PECOD) in thin films have been studied. First, PFO–MEH–PPV and PECOD were dissolved in tetrahydrofuran and chloroform respectively for different concentrations. These solutions were deposited on glass substrates to form thin films with different thicknesses. The absorbance and photoluminescence spectra for each individual pure polymer were recorded and contrasted with those for blended conjugated polymer’s films to determine the effect of blending on the absorption and photoluminescence. Finally, we present a study on the processing and characterization of organic solar cells fabricated by spin coating pure PFO–MEH–PPV, PECOD and their blend as the organic active layer onto indium tin oxide layer (150 nm), followed by the evaporation of silver cathode (110 nm). The current–voltage characteristics of these cells were determined and external quantum efficiency. Upon blending the two polymers in solid forms, it could be seen that the efficiency (6.25%) for the cells based on a blend layer is higher than the ones without blending (4.4%). Finally, we demonstrated here that the combination/blending of conjugated polymers has resulted in optimized solar device function, with reasonably quantum efficiency higher than 10%.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference C.R. McNeill, N.C. Greenham, Conjugated-polymer blends for optoelectronics. Adv. Mater. 21, 3840–3850 (2009)CrossRef C.R. McNeill, N.C. Greenham, Conjugated-polymer blends for optoelectronics. Adv. Mater. 21, 3840–3850 (2009)CrossRef
2.
go back to reference S. Barth, H. Bassler, Intrinsic photoconduction in PPV-type conjugated polymers. Phys. Rev. Lett. 79, 4445–4448 (1997)CrossRef S. Barth, H. Bassler, Intrinsic photoconduction in PPV-type conjugated polymers. Phys. Rev. Lett. 79, 4445–4448 (1997)CrossRef
3.
go back to reference J. Li et al., Photovoltaic properties of MEH–PPV doped with new methanofullerene derivatives. Synth. Met. 137, 1527–1528 (2003)CrossRef J. Li et al., Photovoltaic properties of MEH–PPV doped with new methanofullerene derivatives. Synth. Met. 137, 1527–1528 (2003)CrossRef
4.
go back to reference S. Kumar, T. Nann, First solar cells based on CdTe nanoparticle/MEH–PPV composites. Mater. Res. Soc. 19, 1990–1994 (2009)CrossRef S. Kumar, T. Nann, First solar cells based on CdTe nanoparticle/MEH–PPV composites. Mater. Res. Soc. 19, 1990–1994 (2009)CrossRef
5.
go back to reference G. He, J. Liu, Y. Li, Y. Yang, Efficient polymer light-emitting diodes using conjugated polymer blends. Appl. Phys. Lett. 80, 1891–1893 (2002)CrossRef G. He, J. Liu, Y. Li, Y. Yang, Efficient polymer light-emitting diodes using conjugated polymer blends. Appl. Phys. Lett. 80, 1891–1893 (2002)CrossRef
6.
go back to reference A. Babel, S.A. Jenekhe, High electron mobility in ladder polymer field-effect transistors. J. Am. Chem. Soc. 125, 13656–13657 (2003)CrossRef A. Babel, S.A. Jenekhe, High electron mobility in ladder polymer field-effect transistors. J. Am. Chem. Soc. 125, 13656–13657 (2003)CrossRef
7.
go back to reference H. Sirringhaus, N. Tessler, R.H. Friend, Integrated optoelectronic devices based on conjugated polymers. Science 280, 1741–1744 (1998)CrossRef H. Sirringhaus, N. Tessler, R.H. Friend, Integrated optoelectronic devices based on conjugated polymers. Science 280, 1741–1744 (1998)CrossRef
8.
go back to reference J.H. Burroughs, D.C. Bradley, A.R. Brown, R.N. Marks, K.D. Mackay, R.H. Friend, P.L. Burn, A.B. Holmes, Light-Emitting Diodes Based on Conjugated Polymers. Nature 347, 539–541 (1990)CrossRef J.H. Burroughs, D.C. Bradley, A.R. Brown, R.N. Marks, K.D. Mackay, R.H. Friend, P.L. Burn, A.B. Holmes, Light-Emitting Diodes Based on Conjugated Polymers. Nature 347, 539–541 (1990)CrossRef
9.
10.
go back to reference J. Liu, S.Y. Shi, L. Ma, Y. Yang, Device performance and polymer morphology in polymer light emitting diodes: the control of device electrical properties and metal/polymer contact. J. Appl. Phys. 88, 605–607 (2000)CrossRef J. Liu, S.Y. Shi, L. Ma, Y. Yang, Device performance and polymer morphology in polymer light emitting diodes: the control of device electrical properties and metal/polymer contact. J. Appl. Phys. 88, 605–607 (2000)CrossRef
11.
go back to reference Y. Shi, J. Liu, Y. Yang, Device performance and polymer morphology in polymer light emitting diodes: the control of thin film morphology and device quantum efficiency. J. Appl. Phys. 87, 4254–4263 (2000)CrossRef Y. Shi, J. Liu, Y. Yang, Device performance and polymer morphology in polymer light emitting diodes: the control of thin film morphology and device quantum efficiency. J. Appl. Phys. 87, 4254–4263 (2000)CrossRef
12.
go back to reference X. Deng, Light-emitting devices with conjugated polymers. Int. J. Mol. Sci. 12, 1575–1594 (2001)CrossRef X. Deng, Light-emitting devices with conjugated polymers. Int. J. Mol. Sci. 12, 1575–1594 (2001)CrossRef
13.
go back to reference I.H. Campbell, B.K. Crone, Efficient, visible organic light-emitting diodes utilizing a single polymer layer doped with quantum dots. Appl. Phys. Lett. 92, 043303/3 (2008)CrossRef I.H. Campbell, B.K. Crone, Efficient, visible organic light-emitting diodes utilizing a single polymer layer doped with quantum dots. Appl. Phys. Lett. 92, 043303/3 (2008)CrossRef
14.
go back to reference H. Benten, D. Mori, H. Ohkita, S. Ito, Recent research progress of polymer donor/polymer acceptor blend solar cells. J. Mater. Chem. A 4, 5340–5365 (2016)CrossRef H. Benten, D. Mori, H. Ohkita, S. Ito, Recent research progress of polymer donor/polymer acceptor blend solar cells. J. Mater. Chem. A 4, 5340–5365 (2016)CrossRef
15.
go back to reference D. Olzon-Dionysio, J.F.D. Chubaci, M. Matsuoka, R.M. Faria, F.E.G. Guimaraes, Ion beam assisted deposition of an organic light emitting diode electrode. Surf. Coat. Technol. 204, 3096–3099 (2010)CrossRef D. Olzon-Dionysio, J.F.D. Chubaci, M. Matsuoka, R.M. Faria, F.E.G. Guimaraes, Ion beam assisted deposition of an organic light emitting diode electrode. Surf. Coat. Technol. 204, 3096–3099 (2010)CrossRef
16.
go back to reference S.C. Veenstra, J. Loos, J.M. Kroon, Nanoscale structure of solar cells based on pure conjugated polymer blends. Prog. Photovolt. 15(8), 727–740 (2007)CrossRef S.C. Veenstra, J. Loos, J.M. Kroon, Nanoscale structure of solar cells based on pure conjugated polymer blends. Prog. Photovolt. 15(8), 727–740 (2007)CrossRef
17.
go back to reference T.-Q. Nguyen, J. Liu, B.J. Schwartz, Controlling interchain interactions in conjugated polymers: the effect of chain morphology on exciton–exciton annihilation and aggregation in MEH–PPV films. J. Phys. Chem. B 104, 237–255 (2000)CrossRef T.-Q. Nguyen, J. Liu, B.J. Schwartz, Controlling interchain interactions in conjugated polymers: the effect of chain morphology on exciton–exciton annihilation and aggregation in MEH–PPV films. J. Phys. Chem. B 104, 237–255 (2000)CrossRef
18.
go back to reference A. Kraft, A.G. Grimsdale, A.B. Holmes, Electroluminescent conjugated polymers-seeing polymers in a new light. Angew. Chem. Int. Ed. 37, 402–428 (1998)CrossRef A. Kraft, A.G. Grimsdale, A.B. Holmes, Electroluminescent conjugated polymers-seeing polymers in a new light. Angew. Chem. Int. Ed. 37, 402–428 (1998)CrossRef
19.
go back to reference S.A. Jenekhe, J.A. Osaheni, Excimers and exciplexes of conjugated polymers. Science 265, 765–768 (1994)CrossRef S.A. Jenekhe, J.A. Osaheni, Excimers and exciplexes of conjugated polymers. Science 265, 765–768 (1994)CrossRef
20.
go back to reference X. Zhang, S.A. Jenekhe, Electroluminescence of multicomponent conjugated polymers. Macromolecules 33, 2069–2082 (2000)CrossRef X. Zhang, S.A. Jenekhe, Electroluminescence of multicomponent conjugated polymers. Macromolecules 33, 2069–2082 (2000)CrossRef
21.
go back to reference N. Mustapha, Z. Fekkai, A. Alkaoud, Enhanced efficiency of organic solar cells based on (MEH–PPV) with graphene and quantum dots. Opt. Int. J. Light Electron Opt. 127, 2755–2760 (2016)CrossRef N. Mustapha, Z. Fekkai, A. Alkaoud, Enhanced efficiency of organic solar cells based on (MEH–PPV) with graphene and quantum dots. Opt. Int. J. Light Electron Opt. 127, 2755–2760 (2016)CrossRef
22.
go back to reference N. Mustapha, K.H. Ibnaouf, Z. Fekkai, A. Hennache, S. Prasad, A. Alyamani, Improved efficiency of solar cells based on BEHP-co-MEH–PPV doped with ZnO nanoparticles. Opt. Int. J. Light Electron Opt. 124(22), 5524–5527 (2013)CrossRef N. Mustapha, K.H. Ibnaouf, Z. Fekkai, A. Hennache, S. Prasad, A. Alyamani, Improved efficiency of solar cells based on BEHP-co-MEH–PPV doped with ZnO nanoparticles. Opt. Int. J. Light Electron Opt. 124(22), 5524–5527 (2013)CrossRef
23.
go back to reference A. Alyamani, K.H. Ibnaouf, O.S. Yassin, M.S. AlSalhi, Z. Fekkai, N. Mustapha, Spectral, electrical and morphological properties of spin coated MEH–PPV and cresyl violet blended thin films for a light emitting diode. Opt. Int. J. Light Electron Opt. 127, 2331–2335 (2016)CrossRef A. Alyamani, K.H. Ibnaouf, O.S. Yassin, M.S. AlSalhi, Z. Fekkai, N. Mustapha, Spectral, electrical and morphological properties of spin coated MEH–PPV and cresyl violet blended thin films for a light emitting diode. Opt. Int. J. Light Electron Opt. 127, 2331–2335 (2016)CrossRef
24.
go back to reference S. Hameed, P. Predeep, M.R. Baiju, Polymer light emitting diodes-a review on materials and techniques. Rev. Adv. Mater. Sci. 26, 30–42 (2010) S. Hameed, P. Predeep, M.R. Baiju, Polymer light emitting diodes-a review on materials and techniques. Rev. Adv. Mater. Sci. 26, 30–42 (2010)
25.
go back to reference F.L. Zhang, M. Johansson, M.R. Andersson, J.C. Hummelen, O. Inganas, O. Inganäs, Polymer solar cells based on MEH–PPV and PCBM. Synth. Met. 137(1), 1401–1402 (2003)CrossRef F.L. Zhang, M. Johansson, M.R. Andersson, J.C. Hummelen, O. Inganas, O. Inganäs, Polymer solar cells based on MEH–PPV and PCBM. Synth. Met. 137(1), 1401–1402 (2003)CrossRef
26.
go back to reference S.S. Sharma, K. Sharma, G. D. Sharma, Efficient bulk heterojunction photovoltaic devices based on modified PCBM. Nanotechnol. Rev. 4(5), 419–428 (2015)CrossRef S.S. Sharma, K. Sharma, G. D. Sharma, Efficient bulk heterojunction photovoltaic devices based on modified PCBM. Nanotechnol. Rev. 4(5), 419–428 (2015)CrossRef
27.
go back to reference F. Araujo de Castro, J. Heier, F. Nuesch, R. Hany, Origin of the kink in current-density versus voltage curves and efficiency enhancement of polymer-C60 heterojunction solar cells. IEEE J. Sel. Top. Quantum Electron 16(6), 1690–1699 (2011)CrossRef F. Araujo de Castro, J. Heier, F. Nuesch, R. Hany, Origin of the kink in current-density versus voltage curves and efficiency enhancement of polymer-C60 heterojunction solar cells. IEEE J. Sel. Top. Quantum Electron 16(6), 1690–1699 (2011)CrossRef
28.
go back to reference R. Kisslinger, W. Hua, K. Shankar, Bulk heterojunction solar cells based on blends of conjugated polymers with II–VI and IV–VI inorganic semiconductor quantum dots. Polymers 9(2), 35–63 (2017)CrossRef R. Kisslinger, W. Hua, K. Shankar, Bulk heterojunction solar cells based on blends of conjugated polymers with II–VI and IV–VI inorganic semiconductor quantum dots. Polymers 9(2), 35–63 (2017)CrossRef
29.
go back to reference K. Norrman, A. Ghanbari-Siahkali, N. Larsen, Studies of spin-coated polymer films. Annu. Rep. Prog. Chem. C 101, 174–201 (2005)CrossRef K. Norrman, A. Ghanbari-Siahkali, N. Larsen, Studies of spin-coated polymer films. Annu. Rep. Prog. Chem. C 101, 174–201 (2005)CrossRef
30.
go back to reference G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat. Mater. 4, 864–868 (2005)CrossRef G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat. Mater. 4, 864–868 (2005)CrossRef
31.
go back to reference F. Zhang, K.G. Jespersen, C. Bjoerstroem, M. Svensson, M.R. Andersson, V. Sundström, K. Magnusson, E. Moons, A. Yartsev, O. Inganaes, Influence of solvent mixing on the morphology and performance of solar cells based on polyfluorene copolymer/fullerene blends. Adv. Funct. Mater. 16, 667–674 (2006)CrossRef F. Zhang, K.G. Jespersen, C. Bjoerstroem, M. Svensson, M.R. Andersson, V. Sundström, K. Magnusson, E. Moons, A. Yartsev, O. Inganaes, Influence of solvent mixing on the morphology and performance of solar cells based on polyfluorene copolymer/fullerene blends. Adv. Funct. Mater. 16, 667–674 (2006)CrossRef
32.
go back to reference Y. Yao, J. Hou, Z. Xu, G. Li, Y. Yang, Effects of solvent mixtures on the nanoscale phase separation in polymer solar cells. Adv. Funct. Mater. 18, 1783–1789 (2008)CrossRef Y. Yao, J. Hou, Z. Xu, G. Li, Y. Yang, Effects of solvent mixtures on the nanoscale phase separation in polymer solar cells. Adv. Funct. Mater. 18, 1783–1789 (2008)CrossRef
33.
go back to reference S. Tongay, K. Berke, M. Lemaitre, Z. Nasrollahi, D.B. Tanner, A.F. Herbard, B.R. Appleton, Stable hole doping of graphene for low electrical resistance and high optical transparency. Nanotechnology 22, 42570–42571 (2011)CrossRef S. Tongay, K. Berke, M. Lemaitre, Z. Nasrollahi, D.B. Tanner, A.F. Herbard, B.R. Appleton, Stable hole doping of graphene for low electrical resistance and high optical transparency. Nanotechnology 22, 42570–42571 (2011)CrossRef
34.
go back to reference S.C. Veenstra, J. Loos, J.M. Kroon, Nanoscale structure of solar cells based on pure conjugated polymer blends. Prog. Photovolt. Res. Appl. 15, 727–740 (2007)CrossRef S.C. Veenstra, J. Loos, J.M. Kroon, Nanoscale structure of solar cells based on pure conjugated polymer blends. Prog. Photovolt. Res. Appl. 15, 727–740 (2007)CrossRef
35.
go back to reference C. R. McNeill. Morphology of all-polymer solar cells. Energy Environ. Sci. 5, 5653–5667 (2012)CrossRef C. R. McNeill. Morphology of all-polymer solar cells. Energy Environ. Sci. 5, 5653–5667 (2012)CrossRef
36.
go back to reference A. Facchetti, Polymer donor–polymer acceptor (all-polymer) solar cells. Mater. Today 16, 123–132 (2013)CrossRef A. Facchetti, Polymer donor–polymer acceptor (all-polymer) solar cells. Mater. Today 16, 123–132 (2013)CrossRef
37.
go back to reference T. Kim, J.H. Kim, T.E. Kang, C. Lee, H. Kang, M. Shin, C. Wang, B. Ma, T.S. Kim, B.J. Kim, U. Jeong, Flexible, highly efficient all-polymer solar cells. Nat. Commun. 6, 8547–8555 (2015)CrossRef T. Kim, J.H. Kim, T.E. Kang, C. Lee, H. Kang, M. Shin, C. Wang, B. Ma, T.S. Kim, B.J. Kim, U. Jeong, Flexible, highly efficient all-polymer solar cells. Nat. Commun. 6, 8547–8555 (2015)CrossRef
38.
go back to reference C. Sun, F. Pan, H. Bin, J. Zhang, L. Xue, B. Qui, Z. Wei, Z.G. Zhang, Y. Li, A low cost and high performance donor material for polymer solar cells. Nat. Commun. 9(1), 1–10 (2018)CrossRef C. Sun, F. Pan, H. Bin, J. Zhang, L. Xue, B. Qui, Z. Wei, Z.G. Zhang, Y. Li, A low cost and high performance donor material for polymer solar cells. Nat. Commun. 9(1), 1–10 (2018)CrossRef
Metadata
Title
Energy transfer-enhanced external power conversion efficiency in blended polymeric thin film solar devices
Authors
Nazir Mustapha
Mohamad S. AlSalhi
Saradh Prasad
Publication date
14-03-2019
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 8/2019
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-01103-8

Other articles of this Issue 8/2019

Journal of Materials Science: Materials in Electronics 8/2019 Go to the issue