Skip to main content
Top
Published in:
Cover of the book

2017 | OriginalPaper | Chapter

1. Engineering Ceramic Fiber Nanostructures Through Polymer-Mediated Electrospinning

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Electrospinning is increasingly used as a simple and straightforward technique to fabricate one-dimensional fibers from both organic and inorganic materials. These one-dimensional fibers with controlled sizes possess some unique features such as large surface area to volume ratio, high porosity, and low density. Compared to other conventional materials, these features make them attractive for applications such as energy harvesting, energy storage, super-hydrophobic membranes, and sensors. This chapter provides an overview on the synthesis of inorganic fibers through polymer-mediated electrospinning. Some of the common techniques employed by many researchers, such as solgel combined with electrospinning, emulsion electrospinning, and electrospinning combined with solid–gas reaction, to fabricate metal oxide fibers are discussed. In addition, techniques to fabricate ceramic and metal oxide fibers having different morphologies and hierarchical structures are described. Recent applications of electrospun metal oxide fibers are finally highlighted with a focus on filtration, sensors, photocatalysis, and energy.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Liu SX, Hu LF, Xu XJ et al (2015) Nickel cobaltite nanostructures for photoelectric and catalytic applications. Small 11(34):4267–4283CrossRef Liu SX, Hu LF, Xu XJ et al (2015) Nickel cobaltite nanostructures for photoelectric and catalytic applications. Small 11(34):4267–4283CrossRef
2.
go back to reference Sharma J, Imae T (2009) Recent advances in fabrication of anisotropic metallic nanostructures. J Nanosci Nanotechnol 9(1):19–40CrossRef Sharma J, Imae T (2009) Recent advances in fabrication of anisotropic metallic nanostructures. J Nanosci Nanotechnol 9(1):19–40CrossRef
3.
go back to reference Ye XZ, Qi LM (2011) Two-dimensionally patterned nanostructures based on monolayer colloidal crystals: controllable fabrication, assembly, and applications. Nano Today 6(6):608–631CrossRef Ye XZ, Qi LM (2011) Two-dimensionally patterned nanostructures based on monolayer colloidal crystals: controllable fabrication, assembly, and applications. Nano Today 6(6):608–631CrossRef
4.
go back to reference Cozzoli PD, Pellegrino T, Manna L (2006) Synthesis, properties and perspectives of hybrid nanocrystal structures. Chem Soc Rev 35(11):1195–1208CrossRef Cozzoli PD, Pellegrino T, Manna L (2006) Synthesis, properties and perspectives of hybrid nanocrystal structures. Chem Soc Rev 35(11):1195–1208CrossRef
5.
go back to reference Law M, Goldberger J, Yang PD (2004) Semiconductor nanowires and nanotubes. Annu Rev Mater Res 34:83–122CrossRef Law M, Goldberger J, Yang PD (2004) Semiconductor nanowires and nanotubes. Annu Rev Mater Res 34:83–122CrossRef
6.
7.
go back to reference Wang ZY, Zhou L, Lou XW (2012) Metal oxide hollow nanostructures for lithium-ion batteries. Adv Mater 24(14):1903–1911CrossRef Wang ZY, Zhou L, Lou XW (2012) Metal oxide hollow nanostructures for lithium-ion batteries. Adv Mater 24(14):1903–1911CrossRef
8.
go back to reference Barth S, Hernandez-Ramirez F, Holmes JD et al (2010) Synthesis and applications of one-dimensional semiconductors. Prog Mater Sci 55(6):563–627CrossRef Barth S, Hernandez-Ramirez F, Holmes JD et al (2010) Synthesis and applications of one-dimensional semiconductors. Prog Mater Sci 55(6):563–627CrossRef
9.
go back to reference Kim FS, Ren GQ, Jenekhe SA (2011) One-dimensional nanostructures of pi-conjugated molecular systems: assembly, properties, and applications from photovoltaics, sensors, and nanophotonics to nanoelectronics. Chem Mater 23(3):682–732CrossRef Kim FS, Ren GQ, Jenekhe SA (2011) One-dimensional nanostructures of pi-conjugated molecular systems: assembly, properties, and applications from photovoltaics, sensors, and nanophotonics to nanoelectronics. Chem Mater 23(3):682–732CrossRef
10.
go back to reference Kim Y, Shanmugam S (2013) Polyoxometalate-reduced graphene oxide hybrid catalyst: synthesis, structure, and electrochemical properties. ACS Appl Mater Interfaces 5(22):12197–12204CrossRef Kim Y, Shanmugam S (2013) Polyoxometalate-reduced graphene oxide hybrid catalyst: synthesis, structure, and electrochemical properties. ACS Appl Mater Interfaces 5(22):12197–12204CrossRef
11.
go back to reference Dong ZX, Kennedy SJ, Wu YQ (2011) Electrospinning materials for energy-related applications and devices. J Power Sources 196(11):4886–4904CrossRef Dong ZX, Kennedy SJ, Wu YQ (2011) Electrospinning materials for energy-related applications and devices. J Power Sources 196(11):4886–4904CrossRef
12.
go back to reference Kim ID, Jeon EK, Choi SH et al (2010) Electrospun SnO2 nanofiber mats with thermo-compression step for gas sensing applications. J Electroceram 25(2–4):159–167CrossRef Kim ID, Jeon EK, Choi SH et al (2010) Electrospun SnO2 nanofiber mats with thermo-compression step for gas sensing applications. J Electroceram 25(2–4):159–167CrossRef
13.
go back to reference Baji A, Mai Y-W, Yimnirun R et al (2014) Electrospun barium titanate/cobalt ferrite composite fibers with improved magnetoelectric performance. RSC Adv 4(98):55217–55223CrossRef Baji A, Mai Y-W, Yimnirun R et al (2014) Electrospun barium titanate/cobalt ferrite composite fibers with improved magnetoelectric performance. RSC Adv 4(98):55217–55223CrossRef
14.
go back to reference Baji A, Mai Y-W, Li Q et al (2011) Electrospinning induced ferroelectricity in poly(vinylidene fluoride) fibers. Nanoscale 3(8):3068–3071CrossRef Baji A, Mai Y-W, Li Q et al (2011) Electrospinning induced ferroelectricity in poly(vinylidene fluoride) fibers. Nanoscale 3(8):3068–3071CrossRef
15.
go back to reference Baji A, Mai Y-W, Wong SC et al (2010) Electrospinning of polymer nanofibers: effects on oriented morphology, structures and tensile properties. Compos Sci Technol 70(5):703–718CrossRef Baji A, Mai Y-W, Wong SC et al (2010) Electrospinning of polymer nanofibers: effects on oriented morphology, structures and tensile properties. Compos Sci Technol 70(5):703–718CrossRef
16.
go back to reference Kumar PS, Nizar SAS, Sundaramurthy J et al (2011) Tunable hierarchical TiO2 nanostructures by controlled annealing of electrospun fibers: formation mechanism, morphology, crystallographic phase and photoelectrochemical performance analysis. J Mater Chem 21(26):9784–9790CrossRef Kumar PS, Nizar SAS, Sundaramurthy J et al (2011) Tunable hierarchical TiO2 nanostructures by controlled annealing of electrospun fibers: formation mechanism, morphology, crystallographic phase and photoelectrochemical performance analysis. J Mater Chem 21(26):9784–9790CrossRef
17.
go back to reference Lim SK, Hwang SH, Chang D et al (2010) Preparation of mesoporous In2O3 nanofibers by electrospinning and their application as a CO gas sensor. Sens Actuators, B 149(1):28–33CrossRef Lim SK, Hwang SH, Chang D et al (2010) Preparation of mesoporous In2O3 nanofibers by electrospinning and their application as a CO gas sensor. Sens Actuators, B 149(1):28–33CrossRef
18.
go back to reference Wang Y, Huang HB, Gao JX et al (2014) TiO2–SiO2 composite fibers with tunable interconnected porous hierarchy fabricated by single-spinneret electrospinning toward enhanced photocatalytic activity. J Mater Chem A 2(31):12442–12448CrossRef Wang Y, Huang HB, Gao JX et al (2014) TiO2–SiO2 composite fibers with tunable interconnected porous hierarchy fabricated by single-spinneret electrospinning toward enhanced photocatalytic activity. J Mater Chem A 2(31):12442–12448CrossRef
19.
go back to reference Baji A, Zhou LM, Mai Y-W et al (2015) On the Adhesion performance of a single electrospun fiber. Appl Phys A-Mater 118(1):51–56CrossRef Baji A, Zhou LM, Mai Y-W et al (2015) On the Adhesion performance of a single electrospun fiber. Appl Phys A-Mater 118(1):51–56CrossRef
20.
go back to reference Li CR, Zhang XQ, Dong WJ et al (2012) High photocatalytic activity material based on high-porosity ZnO/CeO2 nanofibers. Mater Lett 80:145–147CrossRef Li CR, Zhang XQ, Dong WJ et al (2012) High photocatalytic activity material based on high-porosity ZnO/CeO2 nanofibers. Mater Lett 80:145–147CrossRef
21.
go back to reference Baji A, Mai Y-W, Du XS et al (2012) Improved tensile strength and ferroelectric phase content of self-assembled polyvinylidene fluoride fiber yarns. Macromol Mater Eng 297(3):209–213CrossRef Baji A, Mai Y-W, Du XS et al (2012) Improved tensile strength and ferroelectric phase content of self-assembled polyvinylidene fluoride fiber yarns. Macromol Mater Eng 297(3):209–213CrossRef
22.
go back to reference Dai YQ, Lu XF, McKiernan M et al (2010) Hierarchical nanostructures of K-birnessite nanoplates on anatase nanofibers and their application for decoloration of dye solution. J Mater Chem 20(16):3157–3162CrossRef Dai YQ, Lu XF, McKiernan M et al (2010) Hierarchical nanostructures of K-birnessite nanoplates on anatase nanofibers and their application for decoloration of dye solution. J Mater Chem 20(16):3157–3162CrossRef
23.
go back to reference Lu BA, Li XD, Wang TH et al (2013) WO3 nanoparticles decorated on both sidewalls of highly porous TiO2 nanotubes to improve UV and visible-light photocatalysis. J Mater Chem A 1(12):3900–3906CrossRef Lu BA, Li XD, Wang TH et al (2013) WO3 nanoparticles decorated on both sidewalls of highly porous TiO2 nanotubes to improve UV and visible-light photocatalysis. J Mater Chem A 1(12):3900–3906CrossRef
24.
go back to reference Jo SM, Song MY, Ahn YR et al (2005) Nanofibril formation of electrospun TiO2 fibers and its application to dye-sensitized solar cells. J Macromol Sci Pure 42(11):1529–1540CrossRef Jo SM, Song MY, Ahn YR et al (2005) Nanofibril formation of electrospun TiO2 fibers and its application to dye-sensitized solar cells. J Macromol Sci Pure 42(11):1529–1540CrossRef
25.
go back to reference Li MY, Han GY, Yang BS (2008) Fabrication of the catalytic electrodes for methanol oxidation on electrospinning-derived carbon fibrous mats. Electrochem Commun 10(6):880–883CrossRef Li MY, Han GY, Yang BS (2008) Fabrication of the catalytic electrodes for methanol oxidation on electrospinning-derived carbon fibrous mats. Electrochem Commun 10(6):880–883CrossRef
26.
go back to reference Agarwal S, Greiner A, Wendorff JH (2013) Functional materials by electrospinning of polymers. Prog Polym Sci 38(6):963–991CrossRef Agarwal S, Greiner A, Wendorff JH (2013) Functional materials by electrospinning of polymers. Prog Polym Sci 38(6):963–991CrossRef
27.
go back to reference Baji A, Mai Y-W, Li Q et al (2011) Nanoscale investigation of ferroelectric properties in electrospun barium titanate/polyvinylidene fluoride composite fibers using piezoresponse force microscopy. Compos Sci Technol 71(11):1435–1440CrossRef Baji A, Mai Y-W, Li Q et al (2011) Nanoscale investigation of ferroelectric properties in electrospun barium titanate/polyvinylidene fluoride composite fibers using piezoresponse force microscopy. Compos Sci Technol 71(11):1435–1440CrossRef
28.
go back to reference Wang XH, Richey FW, Wujcik KH et al (2014) Ultra-low platinum loadings in polymer electrolyte membrane fuel cell electrodes fabricated via simultaneous electrospinning/electrospraying method. J Power Sources 264:42–48CrossRef Wang XH, Richey FW, Wujcik KH et al (2014) Ultra-low platinum loadings in polymer electrolyte membrane fuel cell electrodes fabricated via simultaneous electrospinning/electrospraying method. J Power Sources 264:42–48CrossRef
29.
go back to reference Cavaliere S, Subianto S, Savych I et al (2011) Electrospinning: designed architectures for energy conversion and storage devices. Energy Environ Sci 4(12):4761–4785CrossRef Cavaliere S, Subianto S, Savych I et al (2011) Electrospinning: designed architectures for energy conversion and storage devices. Energy Environ Sci 4(12):4761–4785CrossRef
30.
go back to reference Sahay R, Kumar PS, Sridhar R et al (2012) Electrospun composite nanofibers and their multifaceted applications. J Mater Chem 22(26):12953–12971CrossRef Sahay R, Kumar PS, Sridhar R et al (2012) Electrospun composite nanofibers and their multifaceted applications. J Mater Chem 22(26):12953–12971CrossRef
31.
go back to reference Thavasi V, Singh G, Ramakrishna S (2008) Electrospun nanofibers in energy and environmental applications. Energy Environ Sci 1(2):205–221CrossRef Thavasi V, Singh G, Ramakrishna S (2008) Electrospun nanofibers in energy and environmental applications. Energy Environ Sci 1(2):205–221CrossRef
32.
go back to reference Larsen G, Velarde-Ortiz R, Minchow K et al (2003) A method for making inorganic and hybrid (organic/inorganic) fibers and vesicles with diameters in the submicrometer and micrometer range via sol-gel chemistry and electrically forced liquid jets. J Am Chem Soc 125(5):1154–1155CrossRef Larsen G, Velarde-Ortiz R, Minchow K et al (2003) A method for making inorganic and hybrid (organic/inorganic) fibers and vesicles with diameters in the submicrometer and micrometer range via sol-gel chemistry and electrically forced liquid jets. J Am Chem Soc 125(5):1154–1155CrossRef
33.
go back to reference Li D, Xia YN (2003) Fabrication of titania nanofibers by electrospinning. Nano Lett 3(4):555–560CrossRef Li D, Xia YN (2003) Fabrication of titania nanofibers by electrospinning. Nano Lett 3(4):555–560CrossRef
34.
go back to reference Baji A, Mai YW, Li QA et al (2011) One-dimensional multiferroic bismuth ferrite fibers obtained by electrospinning techniques. Nanotechnology 22(23):235702CrossRef Baji A, Mai YW, Li QA et al (2011) One-dimensional multiferroic bismuth ferrite fibers obtained by electrospinning techniques. Nanotechnology 22(23):235702CrossRef
35.
go back to reference Lee JS, Kwon OS, Park SJ et al (2011) Fabrication of ultrafine metal-oxide-decorated carbon nanofibers for DMMP sensor application. ACS Nano 5(10):7992–8001CrossRef Lee JS, Kwon OS, Park SJ et al (2011) Fabrication of ultrafine metal-oxide-decorated carbon nanofibers for DMMP sensor application. ACS Nano 5(10):7992–8001CrossRef
36.
go back to reference Ostermann R, Li D, Yin YD et al (2006) V2O5 nanorods on TiO2 nanofibers: a new class of hierarchical nanostructures enabled by electrospinning and calcination. Nano Lett 6(6):1297–1302CrossRef Ostermann R, Li D, Yin YD et al (2006) V2O5 nanorods on TiO2 nanofibers: a new class of hierarchical nanostructures enabled by electrospinning and calcination. Nano Lett 6(6):1297–1302CrossRef
37.
go back to reference Zhan SH, Chen DR, Jiao XL et al (2006) Long TiO2 hollow fibers with mesoporous walls: sol–gel combined electrospun fabrication and photocatalytic properties. J Phys Chem B 110(23):11199–11204CrossRef Zhan SH, Chen DR, Jiao XL et al (2006) Long TiO2 hollow fibers with mesoporous walls: sol–gel combined electrospun fabrication and photocatalytic properties. J Phys Chem B 110(23):11199–11204CrossRef
38.
go back to reference Aryal S, Kim CK, Kim KW et al (2008) Multi-walled carbon nanotubes/TiO2 composite nanofiber by electrospinning. Mater Sci Eng, C 28(1):75–79CrossRef Aryal S, Kim CK, Kim KW et al (2008) Multi-walled carbon nanotubes/TiO2 composite nanofiber by electrospinning. Mater Sci Eng, C 28(1):75–79CrossRef
39.
go back to reference Kanjwal MA, Sheikh FA, Barakat NAM et al (2011) Co3O4–ZnO hierarchical nanostructures by electrospinning and hydrothermal methods. Appl Surf Sci 257(18):7975–7981CrossRef Kanjwal MA, Sheikh FA, Barakat NAM et al (2011) Co3O4–ZnO hierarchical nanostructures by electrospinning and hydrothermal methods. Appl Surf Sci 257(18):7975–7981CrossRef
40.
go back to reference Isobe T, Kameshima Y, Nakajima A et al (2006) Extrusion method using nylon 66 fibers for the preparation of porous alumina ceramics with oriented pores. J Eur Ceram Soc 26(12):2213–2217CrossRef Isobe T, Kameshima Y, Nakajima A et al (2006) Extrusion method using nylon 66 fibers for the preparation of porous alumina ceramics with oriented pores. J Eur Ceram Soc 26(12):2213–2217CrossRef
41.
go back to reference Jang YS, Jank M, Maier V et al (2010) SiC ceramic micropatterns from polycarbosilanes. J Eur Ceram Soc 30(13):2773–2779CrossRef Jang YS, Jank M, Maier V et al (2010) SiC ceramic micropatterns from polycarbosilanes. J Eur Ceram Soc 30(13):2773–2779CrossRef
42.
go back to reference Lu XF, Wang C, Wei Y (2009) One-dimensional composite nanomaterials: synthesis by electrospinning and their applications. Small 5(21):2349–2370CrossRef Lu XF, Wang C, Wei Y (2009) One-dimensional composite nanomaterials: synthesis by electrospinning and their applications. Small 5(21):2349–2370CrossRef
43.
go back to reference Wen SP, Liu L, Zhang LF et al (2010) Hierarchical electrospun SiO2 nanofibers containing SiO2 nanoparticles with controllable surface-roughness and/or porosity. Mater Lett 64(13):1517–1520CrossRef Wen SP, Liu L, Zhang LF et al (2010) Hierarchical electrospun SiO2 nanofibers containing SiO2 nanoparticles with controllable surface-roughness and/or porosity. Mater Lett 64(13):1517–1520CrossRef
44.
go back to reference Danks AE, Hall SR, Schnepp Z (2016) The evolution of ‘sol-gel’ chemistry as a technique for materials synthesis. Mater Horiz 3(2):91–112CrossRef Danks AE, Hall SR, Schnepp Z (2016) The evolution of ‘sol-gel’ chemistry as a technique for materials synthesis. Mater Horiz 3(2):91–112CrossRef
45.
go back to reference Anjusree GS, Bhupathi A, Balakrishnan A et al (2013) Fabricating fiber, rice and leaf-shaped TiO2 by tuning the chemistry between TiO2 and the polymer during electrospinning. RSC Adv 3(37):16720–16727CrossRef Anjusree GS, Bhupathi A, Balakrishnan A et al (2013) Fabricating fiber, rice and leaf-shaped TiO2 by tuning the chemistry between TiO2 and the polymer during electrospinning. RSC Adv 3(37):16720–16727CrossRef
46.
go back to reference Chen HY, Zhang TL, Fan J et al (2013) Electrospun hierarchical TiO2 nanorods with high porosity for efficient dye-sensitized solar cells. ACS Appl Mater Interfaces 5(18):9205–9211CrossRef Chen HY, Zhang TL, Fan J et al (2013) Electrospun hierarchical TiO2 nanorods with high porosity for efficient dye-sensitized solar cells. ACS Appl Mater Interfaces 5(18):9205–9211CrossRef
47.
go back to reference Nuansing W, Ninmuang S, Jarernboon W et al (2006) Structural characterization and morphology of electrospun TiO2 nanofibers. Mater Sci Eng, B 131(1–3):147–155CrossRef Nuansing W, Ninmuang S, Jarernboon W et al (2006) Structural characterization and morphology of electrospun TiO2 nanofibers. Mater Sci Eng, B 131(1–3):147–155CrossRef
48.
go back to reference He ZY, Liu Q, Hou HL et al (2015) Tailored electrospinning of WO3 nanobelts as efficient ultraviolet photodetectors with photo-dark current ratios up to 1000. ACS Appl Mater Interfaces 7(20):10878–10885CrossRef He ZY, Liu Q, Hou HL et al (2015) Tailored electrospinning of WO3 nanobelts as efficient ultraviolet photodetectors with photo-dark current ratios up to 1000. ACS Appl Mater Interfaces 7(20):10878–10885CrossRef
49.
go back to reference Leng JY, Xu XJ, Lv N et al (2011) Synthesis and gas-sensing characteristics of WO3 nanofibers via electrospinning. J Colloid Interface Sci 356(1):54–57CrossRef Leng JY, Xu XJ, Lv N et al (2011) Synthesis and gas-sensing characteristics of WO3 nanofibers via electrospinning. J Colloid Interface Sci 356(1):54–57CrossRef
50.
go back to reference Chen ZX, Zhang Z, Tsai CC et al (2015) Electrospun mullite fibers from the sol-gel precursor. J Sol–Gel Sci Technol 74(1):208–219CrossRef Chen ZX, Zhang Z, Tsai CC et al (2015) Electrospun mullite fibers from the sol-gel precursor. J Sol–Gel Sci Technol 74(1):208–219CrossRef
51.
go back to reference Guo AR, Liu JC, Dong X et al (2013) Preparation of porous silica ceramics from silica spinning solution and introduced silica particles by electrospinning. Mater Lett 95:74–77CrossRef Guo AR, Liu JC, Dong X et al (2013) Preparation of porous silica ceramics from silica spinning solution and introduced silica particles by electrospinning. Mater Lett 95:74–77CrossRef
52.
go back to reference Newsome TE, Olesik SV (2014) Electrospinning silica/polyvinylpyrrolidone composite nanofibers. J Appl Poly Sci 131(21) Newsome TE, Olesik SV (2014) Electrospinning silica/polyvinylpyrrolidone composite nanofibers. J Appl Poly Sci 131(21)
53.
go back to reference Ding T, Tian Y, Liang K et al (2011) Anisotropic oxygen plasma etching of colloidal particles in electrospun fibers. Chem Commun 47(8):2429–2431CrossRef Ding T, Tian Y, Liang K et al (2011) Anisotropic oxygen plasma etching of colloidal particles in electrospun fibers. Chem Commun 47(8):2429–2431CrossRef
54.
go back to reference Zhang CL, Yu SH (2014) Nanoparticles meet electrospinning: recent advances and future prospects. Chem Soc Rev 43(13):4423–4448CrossRef Zhang CL, Yu SH (2014) Nanoparticles meet electrospinning: recent advances and future prospects. Chem Soc Rev 43(13):4423–4448CrossRef
55.
go back to reference Lu XF, Zhao YY, Wang C (2005) Fabrication of PbS nanoparticles in polymer-fiber matrices by electrospinning. Adv Mater 17(20):2485–2488CrossRef Lu XF, Zhao YY, Wang C (2005) Fabrication of PbS nanoparticles in polymer-fiber matrices by electrospinning. Adv Mater 17(20):2485–2488CrossRef
56.
go back to reference Bai J, Li YX, Yang ST et al (2007) Synthesis of AgCl/PAN composite nanofibres using an electrospinning method. Nanotechnology 18(30):305601CrossRef Bai J, Li YX, Yang ST et al (2007) Synthesis of AgCl/PAN composite nanofibres using an electrospinning method. Nanotechnology 18(30):305601CrossRef
57.
go back to reference Bognitzki M, Becker M, Graeser M et al (2006) Preparation of sub-micrometer copper fibers via electrospinning. Adv Mater 18(18):2384–2386CrossRef Bognitzki M, Becker M, Graeser M et al (2006) Preparation of sub-micrometer copper fibers via electrospinning. Adv Mater 18(18):2384–2386CrossRef
58.
go back to reference Lu BA, Zhu CQ, Zhang ZX et al (2012) Preparation of highly porous TiO2 nanotubes and their catalytic applications. J Mater Chem 22(4):1375–1379CrossRef Lu BA, Zhu CQ, Zhang ZX et al (2012) Preparation of highly porous TiO2 nanotubes and their catalytic applications. J Mater Chem 22(4):1375–1379CrossRef
59.
go back to reference Singh P, Mondal K, Sharma A (2013) Reusable electrospun mesoporous ZnO nanofiber mats for photocatalytic degradation of polycyclic aromatic hydrocarbon dyes in wastewater. J Colloid Interface Sci 394:208–215CrossRef Singh P, Mondal K, Sharma A (2013) Reusable electrospun mesoporous ZnO nanofiber mats for photocatalytic degradation of polycyclic aromatic hydrocarbon dyes in wastewater. J Colloid Interface Sci 394:208–215CrossRef
60.
go back to reference Wang PP, Qi Q, Xuan RF et al (2013) A facile method for enhancing the sensing performance of zinc oxide nanofibers gas sensors. RSC Adv 3(43):19853–19856CrossRef Wang PP, Qi Q, Xuan RF et al (2013) A facile method for enhancing the sensing performance of zinc oxide nanofibers gas sensors. RSC Adv 3(43):19853–19856CrossRef
61.
go back to reference Xia YJ, Song JL, Yuan DN et al (2015) Synthesis and characterization of one-dimensional metal oxides: TiO2, CeO2, Y2O3-stabilized ZrO2 and SrTiO3. Ceram Int 41(1):533–545CrossRef Xia YJ, Song JL, Yuan DN et al (2015) Synthesis and characterization of one-dimensional metal oxides: TiO2, CeO2, Y2O3-stabilized ZrO2 and SrTiO3. Ceram Int 41(1):533–545CrossRef
62.
go back to reference Liu BT, Peng LL (2013) Facile formation of mixed phase porous TiO2 nanotubes and enhanced visible-light photocatalytic activity. J Alloy Compd 571:145–152CrossRef Liu BT, Peng LL (2013) Facile formation of mixed phase porous TiO2 nanotubes and enhanced visible-light photocatalytic activity. J Alloy Compd 571:145–152CrossRef
63.
go back to reference Choi SH, Ankonina G, Youn DY et al (2009) Hollow ZnO nanofibers fabricated using electrospun polymer templates and their electronic transport properties. ACS Nano 3(9):2623–2631CrossRef Choi SH, Ankonina G, Youn DY et al (2009) Hollow ZnO nanofibers fabricated using electrospun polymer templates and their electronic transport properties. ACS Nano 3(9):2623–2631CrossRef
64.
go back to reference Choi SJ, Chattopadhyay S, Kim JJ et al (2016) Coaxial electrospinning of WO3 nanotubes functionalized with bio-inspired Pd catalysts and their superior hydrogen sensing performance. Nanoscale 8(17):9159–9166CrossRef Choi SJ, Chattopadhyay S, Kim JJ et al (2016) Coaxial electrospinning of WO3 nanotubes functionalized with bio-inspired Pd catalysts and their superior hydrogen sensing performance. Nanoscale 8(17):9159–9166CrossRef
65.
go back to reference Liu RL, Liu HQ, Liu JS et al (2012) Fabrication of patterned inorganic nanofibers by electrospinning. Prog Chem 24(8):1484–1496 Liu RL, Liu HQ, Liu JS et al (2012) Fabrication of patterned inorganic nanofibers by electrospinning. Prog Chem 24(8):1484–1496
66.
go back to reference Zhang J, Choi SW, Kim SS (2011) Micro- and nano-scale hollow TiO2 fibers by coaxial electrospinning: preparation and gas sensing. J Solid State Chem 184(11):3008–3013CrossRef Zhang J, Choi SW, Kim SS (2011) Micro- and nano-scale hollow TiO2 fibers by coaxial electrospinning: preparation and gas sensing. J Solid State Chem 184(11):3008–3013CrossRef
67.
go back to reference Zhang ZY, Li XH, Wang CH et al (2009) ZnO hollow nanofibers: fabrication from facile single capillary electrospinning and applications in gas sensors. J Phys Chem C 113(45):19397–19403CrossRef Zhang ZY, Li XH, Wang CH et al (2009) ZnO hollow nanofibers: fabrication from facile single capillary electrospinning and applications in gas sensors. J Phys Chem C 113(45):19397–19403CrossRef
68.
go back to reference Li D, Wang YL, Xia YN (2003) Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays. Nano Lett 3(8):1167–1171CrossRef Li D, Wang YL, Xia YN (2003) Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays. Nano Lett 3(8):1167–1171CrossRef
69.
go back to reference Chang JY, Domnner M, Chang C et al (2012) Piezoelectric nanofibers for energy scavenging applications. Nano Energy 1(3):356–371CrossRef Chang JY, Domnner M, Chang C et al (2012) Piezoelectric nanofibers for energy scavenging applications. Nano Energy 1(3):356–371CrossRef
70.
go back to reference Baji A, Mai Y-W, Wong SC (2011) Effect of fiber diameter on the deformation behavior of self-assembled carbon nanotube reinforced electrospun polyamide 6,6 fibers. Mater Sci Eng, A 528(21):6565–6572CrossRef Baji A, Mai Y-W, Wong SC (2011) Effect of fiber diameter on the deformation behavior of self-assembled carbon nanotube reinforced electrospun polyamide 6,6 fibers. Mater Sci Eng, A 528(21):6565–6572CrossRef
71.
go back to reference Wu H, Lin DD, Zhang R et al (2007) Oriented nanofibers by a newly modified electrospinning method. J Am Ceram Soc 90(2):632–634CrossRef Wu H, Lin DD, Zhang R et al (2007) Oriented nanofibers by a newly modified electrospinning method. J Am Ceram Soc 90(2):632–634CrossRef
72.
go back to reference Li XY, Chen YM, Zhou LM et al (2014) Exceptional electrochemical performance of porous TiO2-carbon nanofibers for lithium ion battery anodes. J Mater Chem A 2(11):3875–3880CrossRef Li XY, Chen YM, Zhou LM et al (2014) Exceptional electrochemical performance of porous TiO2-carbon nanofibers for lithium ion battery anodes. J Mater Chem A 2(11):3875–3880CrossRef
73.
go back to reference Li XY, Chen YM, Wang HT et al (2016) Inserting sn nanoparticles into the pores of TiO2-x-c nanofibers by lithiation. Adv Funct Mater 26(3):376–383CrossRef Li XY, Chen YM, Wang HT et al (2016) Inserting sn nanoparticles into the pores of TiO2-x-c nanofibers by lithiation. Adv Funct Mater 26(3):376–383CrossRef
74.
go back to reference Li XY, Chen YM, Huang HT et al (2016) Electrospun carbon-based nanostructured electrodes for advanced energy storage-A review. Energy Storage Mater 5:58–92CrossRef Li XY, Chen YM, Huang HT et al (2016) Electrospun carbon-based nanostructured electrodes for advanced energy storage-A review. Energy Storage Mater 5:58–92CrossRef
75.
go back to reference Zhu PN, Wu YZ, Reddy MV et al (2012) Long term cycling studies of electrospun TiO2 nanostructures and their composites with MWCNTs for rechargeable Li-ion batteries. RSC Adv 2(2):531–537CrossRef Zhu PN, Wu YZ, Reddy MV et al (2012) Long term cycling studies of electrospun TiO2 nanostructures and their composites with MWCNTs for rechargeable Li-ion batteries. RSC Adv 2(2):531–537CrossRef
76.
go back to reference Zhang YF, Li JY, Li Q et al (2007) Preparation of CeO2–ZrO2 ceramic fibers by electrospinning. J Colloid Interface Sci 307(2):567–571CrossRef Zhang YF, Li JY, Li Q et al (2007) Preparation of CeO2–ZrO2 ceramic fibers by electrospinning. J Colloid Interface Sci 307(2):567–571CrossRef
77.
go back to reference Athauda TJ, Neff JG, Sutherlin L et al (2012) Systematic study of the structure-property relationships of branched hierarchical TiO2/ZnO nanostructures. ACS Appl Mater Interfaces 4(12):6916–6925CrossRef Athauda TJ, Neff JG, Sutherlin L et al (2012) Systematic study of the structure-property relationships of branched hierarchical TiO2/ZnO nanostructures. ACS Appl Mater Interfaces 4(12):6916–6925CrossRef
78.
go back to reference Zhang LS, Ding QW, Huang YP et al (2015) Flexible hybrid membranes with Ni(OH)2 nanoplatelets vertically grown on electrospun carbon nanofibers for high-performance supercapacitors. ACS Appl Mater Interfaces 7(40):22669–22677CrossRef Zhang LS, Ding QW, Huang YP et al (2015) Flexible hybrid membranes with Ni(OH)2 nanoplatelets vertically grown on electrospun carbon nanofibers for high-performance supercapacitors. ACS Appl Mater Interfaces 7(40):22669–22677CrossRef
79.
go back to reference Mao X, Si Y, Chen YC et al (2012) Silica nanofibrous membranes with robust flexibility and thermal stability for high-efficiency fine particulate filtration. RSC Adv 2(32):12216–12223CrossRef Mao X, Si Y, Chen YC et al (2012) Silica nanofibrous membranes with robust flexibility and thermal stability for high-efficiency fine particulate filtration. RSC Adv 2(32):12216–12223CrossRef
80.
go back to reference Wang Y, Li W, Xia YG et al (2014) Electrospun flexible self-standing gamma-alumina fibrous membranes and their potential as high-efficiency fine particulate filtration media. J Mater Chem A 2(36):15124–15131CrossRef Wang Y, Li W, Xia YG et al (2014) Electrospun flexible self-standing gamma-alumina fibrous membranes and their potential as high-efficiency fine particulate filtration media. J Mater Chem A 2(36):15124–15131CrossRef
81.
go back to reference Yang LP, Raza A, Si Y et al (2012) Synthesis of superhydrophobic silica nanofibrous membranes with robust thermal stability and flexibility via in situ polymerization. Nanoscale 4(20):6581–6587CrossRef Yang LP, Raza A, Si Y et al (2012) Synthesis of superhydrophobic silica nanofibrous membranes with robust thermal stability and flexibility via in situ polymerization. Nanoscale 4(20):6581–6587CrossRef
82.
go back to reference Yoon K, Hsiao BS, Chu B (2008) Functional nanofibers for environmental applications. J Mater Chem 18(44):5326–5334CrossRef Yoon K, Hsiao BS, Chu B (2008) Functional nanofibers for environmental applications. J Mater Chem 18(44):5326–5334CrossRef
83.
go back to reference Ding B, Wang MR, Wang XF et al (2010) Electrospun nanomaterials for ultrasensitive sensors. Mater Today 13(11):16–27CrossRef Ding B, Wang MR, Wang XF et al (2010) Electrospun nanomaterials for ultrasensitive sensors. Mater Today 13(11):16–27CrossRef
84.
go back to reference Hung CH, Leung WWF (2011) Filtration of nano-aerosol using nanofiber filter under low Peclet number and transitional flow regime. Sep Purif Technol 79(1):34–42CrossRef Hung CH, Leung WWF (2011) Filtration of nano-aerosol using nanofiber filter under low Peclet number and transitional flow regime. Sep Purif Technol 79(1):34–42CrossRef
85.
go back to reference Wang XF, Ding B, Sun G et al (2013) Electro-spinning/netting: a strategy for the fabrication of three-dimensional polymer nano-fiber/nets. Prog Mater Sci 58(8):1173–1243CrossRef Wang XF, Ding B, Sun G et al (2013) Electro-spinning/netting: a strategy for the fabrication of three-dimensional polymer nano-fiber/nets. Prog Mater Sci 58(8):1173–1243CrossRef
86.
go back to reference Landau O, Rothschild A, Zussman E (2009) Processing-microstructure-properties correlation of ultrasensitive gas sensors produced by electrospinning. Chem Mater 21(1):9–11CrossRef Landau O, Rothschild A, Zussman E (2009) Processing-microstructure-properties correlation of ultrasensitive gas sensors produced by electrospinning. Chem Mater 21(1):9–11CrossRef
87.
go back to reference Kim ID, Rothschild A, Lee BH et al (2006) Ultrasensitive chemiresistors based on electrospun TiO2 nanofibers. Nano Lett 6(9):2009–2013CrossRef Kim ID, Rothschild A, Lee BH et al (2006) Ultrasensitive chemiresistors based on electrospun TiO2 nanofibers. Nano Lett 6(9):2009–2013CrossRef
88.
go back to reference Malwal D, Gopinath P (2016) Fabrication and applications of ceramic nanofibers in water remediation: a review. Crit Rev Env Sci Technol 46(5):500–534CrossRef Malwal D, Gopinath P (2016) Fabrication and applications of ceramic nanofibers in water remediation: a review. Crit Rev Env Sci Technol 46(5):500–534CrossRef
89.
go back to reference Nair AS, Jose R, Shengyuan Y et al (2011) A simple recipe for an efficient TiO2 nanofiber-based dye-sensitized solar cell. J Colloid Interface Sci 353(1):39–45CrossRef Nair AS, Jose R, Shengyuan Y et al (2011) A simple recipe for an efficient TiO2 nanofiber-based dye-sensitized solar cell. J Colloid Interface Sci 353(1):39–45CrossRef
Metadata
Title
Engineering Ceramic Fiber Nanostructures Through Polymer-Mediated Electrospinning
Authors
Avinash Baji
Yiu-Wing Mai
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-57003-7_1

Premium Partners