Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 8/2022

16-06-2022 | Technical Article

Engineering the Surface Melt for In-Space Manufacturing of Aluminum Parts

Authors: Kasra Momeni, Sara Neshani, Chukwudalu Uba, Huan Ding, Jonathan Raush, Shengmin Guo

Published in: Journal of Materials Engineering and Performance | Issue 8/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Aluminum alloys are among the top candidate materials for in-space manufacturing (ISM) due to their lightweight and relatively low melting temperature. A fundamental problem in printing metallic parts using available ISM methods, based on the fused deposition modeling (FDM) technique, is that the integrity of the final printed components is determined mainly by the adhesion between the initial particles. Engineering the surface melt can pave the way to improve the adhesion between the particles and manufacture components with higher mechanical integrity. Here, we developed a phase-field model of surface melting, where the surface energy can directly be implemented from the experimental measurements. The proposed model is adjusted to Al 7075-T6 alloy feedstocks, where the surface energy of these alloys is measured using the sessile drop method. Effect of mechanics has been included using transformation and thermal strains. The effect of elastic energy is compared here with the corresponding cases without mechanics. Two different geometric samples (cylindrical and spherical) are studied, and it is found that cylindrical particles form a more disordered structure upon size reduction compared to the spherical samples.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference B. Liu, Y. Wang, Z. Lin and T. Zhang, Creating Metal Parts By Fused Deposition Modeling And Sintering, Mater. Lett., 2020, 263, p 127252.CrossRef B. Liu, Y. Wang, Z. Lin and T. Zhang, Creating Metal Parts By Fused Deposition Modeling And Sintering, Mater. Lett., 2020, 263, p 127252.CrossRef
2.
go back to reference R.G. Clinton Jr, Overview of Additive Manufacturing Initiatives at NASA Marshall Space Flight Center-in Space and Rocket Engines, 2017 R.G. Clinton Jr, Overview of Additive Manufacturing Initiatives at NASA Marshall Space Flight Center-in Space and Rocket Engines, 2017
3.
go back to reference R. Spivey, S. Gilley, A. Ostrogorsky, R. Grugel, G. Smith, and P. Luz, 2003 SUBSA and PFMI Transparent Furnace Systems Currently in Use in the International Space Station Microgravity Science Glovebox.:41st. Aerospace. Sci. p 1362 R. Spivey, S. Gilley, A. Ostrogorsky, R. Grugel, G. Smith, and P. Luz, 2003 SUBSA and PFMI Transparent Furnace Systems Currently in Use in the International Space Station Microgravity Science Glovebox.:41st. Aerospace. Sci. p 1362
4.
go back to reference P.M. Agrawal, B.M. Rice, L. Zheng, G.F. Velardez and D.L. Thompson, Molecular Dynamics Simulations of the Melting Of 1,3,3-Trinitroazetidine, J. Phys. Chem. B, 2006, 110(11), p 5721–5726.CrossRef P.M. Agrawal, B.M. Rice, L. Zheng, G.F. Velardez and D.L. Thompson, Molecular Dynamics Simulations of the Melting Of 1,3,3-Trinitroazetidine, J. Phys. Chem. B, 2006, 110(11), p 5721–5726.CrossRef
5.
go back to reference C.R.M. Wronski, The Size Dependence of the Melting Point of Small Particles of tin, Br. J. Appl. Phys., 1967, 18(12), p 1731–1737.CrossRef C.R.M. Wronski, The Size Dependence of the Melting Point of Small Particles of tin, Br. J. Appl. Phys., 1967, 18(12), p 1731–1737.CrossRef
7.
go back to reference Y. Shibuta and T. Suzuki, Melting and Nucleation of Iron Nanoparticles, A. Molecular. Dynamics. Study., 2007, 445, p 265–270. Y. Shibuta and T. Suzuki, Melting and Nucleation of Iron Nanoparticles, A. Molecular. Dynamics. Study., 2007, 445, p 265–270.
8.
go back to reference S.L. Lai, J.R.A. Carlsson, L.H. Allen, S.L. Lai, J.R.A. Carlsson and L.H. Allen, Melting Point Depression of al Clusters Generated During the Early Stages of Film Growth Nanocalorimetry Measurements Melting Point Depression of Al Clusters Generated During the Early Stages of Film Growth, Nanocalorimetry. Measur., 2011, 1098, p 10–13. S.L. Lai, J.R.A. Carlsson, L.H. Allen, S.L. Lai, J.R.A. Carlsson and L.H. Allen, Melting Point Depression of al Clusters Generated During the Early Stages of Film Growth Nanocalorimetry Measurements Melting Point Depression of Al Clusters Generated During the Early Stages of Film Growth, Nanocalorimetry. Measur., 2011, 1098, p 10–13.
9.
go back to reference V.I. Levitas, M.L. Pantoya, G. Chauhan and I. Rivero, Effect of the Alumina Shell On the Melting Temperature Depression for Aluminum Nanoparticles, J. Phys. Che. C. Am. Chem. Soc., 2009, 113(32), p 14088–14096.CrossRef V.I. Levitas, M.L. Pantoya, G. Chauhan and I. Rivero, Effect of the Alumina Shell On the Melting Temperature Depression for Aluminum Nanoparticles, J. Phys. Che. C. Am. Chem. Soc., 2009, 113(32), p 14088–14096.CrossRef
11.
go back to reference N. Provatas and K. Elder, Phase-Field Methods in Materials Science and Engineering, Wiley, Germany, 2011. N. Provatas and K. Elder, Phase-Field Methods in Materials Science and Engineering, Wiley, Germany, 2011.
12.
go back to reference K. Momeni and V.I. Levitas, A Phase-Field Approach to Nonequilibrium Phase Transformations in Elastic Solids: Via an Intermediate Phase (melt) Allowing for Interface Stresses, Phys. Chem. Chem. Phys., 2016, 18(17), p 12183–12203.CrossRef K. Momeni and V.I. Levitas, A Phase-Field Approach to Nonequilibrium Phase Transformations in Elastic Solids: Via an Intermediate Phase (melt) Allowing for Interface Stresses, Phys. Chem. Chem. Phys., 2016, 18(17), p 12183–12203.CrossRef
14.
go back to reference K. Momeni, V.I. Levitas and J.A. Warren, The Strong Influence of Internal Stresses on the Nucleation of a Nanosized Deeply Undercooled Melt at a Solid-Solid Phase Interface, Nano. Lett., 2015, 15(4), p 2298–2303.CrossRef K. Momeni, V.I. Levitas and J.A. Warren, The Strong Influence of Internal Stresses on the Nucleation of a Nanosized Deeply Undercooled Melt at a Solid-Solid Phase Interface, Nano. Lett., 2015, 15(4), p 2298–2303.CrossRef
15.
go back to reference K. Momeni, A Diffuse Interface Approach to Phase Transformation via Virtual Melting, ProQuest Dissertations and Theses, 2015, p 193. K. Momeni, A Diffuse Interface Approach to Phase Transformation via Virtual Melting, ProQuest Dissertations and Theses, 2015, p 193.
18.
go back to reference A. Sadeghirad, K. Momeni, Y. Ji, X. Ren, L.-Q.L.Q. Chen and J. Lua, Multiscale Crystal-Plasticity Phase Field and Extended Finite Element Methods For Fatigue Crack Initiation and Propagation Modeling, Int. J. Fract., 2019, 216(1), p 41–57.CrossRef A. Sadeghirad, K. Momeni, Y. Ji, X. Ren, L.-Q.L.Q. Chen and J. Lua, Multiscale Crystal-Plasticity Phase Field and Extended Finite Element Methods For Fatigue Crack Initiation and Propagation Modeling, Int. J. Fract., 2019, 216(1), p 41–57.CrossRef
23.
go back to reference H. Attariani, S. Emad Rezaei and K. Momeni, Defect Engineering, a Path to Make Ultra-High Strength Low-Dimensional Nanostructures, Comput. Mater. Sci., 2018, 151, p 307–316.CrossRef H. Attariani, S. Emad Rezaei and K. Momeni, Defect Engineering, a Path to Make Ultra-High Strength Low-Dimensional Nanostructures, Comput. Mater. Sci., 2018, 151, p 307–316.CrossRef
24.
go back to reference H. Attariani, S.E.E. Rezaei and K. Momeni, Mechanical Property Enhancement of One-Dimensional Nanostructures Through Defect-Mediated Strain Engineering, Extrem. Mech. Lett., 2019, 27, p 66–75.CrossRef H. Attariani, S.E.E. Rezaei and K. Momeni, Mechanical Property Enhancement of One-Dimensional Nanostructures Through Defect-Mediated Strain Engineering, Extrem. Mech. Lett., 2019, 27, p 66–75.CrossRef
25.
go back to reference M. Ghosh, S. Ghosh, H. Attariani, K. Momeni, M. Seibt and G. Mohan Rao, Atomic Defects Influenced Mechanics of II-VI Nanocrystals, Nano Lett, 2016, 16(10), p 5969–5974.CrossRef M. Ghosh, S. Ghosh, H. Attariani, K. Momeni, M. Seibt and G. Mohan Rao, Atomic Defects Influenced Mechanics of II-VI Nanocrystals, Nano Lett, 2016, 16(10), p 5969–5974.CrossRef
26.
go back to reference K. Momeni, H. Attariani and R.A.R.A. Lesar, Structural Transformation in Monolayer Materials: A 2D to 1D Transformation, Phys. Chem. Chem. Phys., 2016, 18(29), p 19873–19879.CrossRef K. Momeni, H. Attariani and R.A.R.A. Lesar, Structural Transformation in Monolayer Materials: A 2D to 1D Transformation, Phys. Chem. Chem. Phys., 2016, 18(29), p 19873–19879.CrossRef
27.
go back to reference K. Momeni and H. Attariani, Electromechanical Properties of 1D ZnO Nanostructures: Nanopiezotronics Building Blocks, Surface and Size-Scale Effects, Phys. Chem. Chem. Phys., 2014, 16(10), p 4522.CrossRef K. Momeni and H. Attariani, Electromechanical Properties of 1D ZnO Nanostructures: Nanopiezotronics Building Blocks, Surface and Size-Scale Effects, Phys. Chem. Chem. Phys., 2014, 16(10), p 4522.CrossRef
28.
go back to reference K. Momeni, G.M. Odegard and R.S. Yassar, Finite Size Effect on the Piezoelectric Properties Of Zno Nanobelts: A Molecular Dynamics Approach, Acta. Mater., 2012, 60(13–14), p 5124. K. Momeni, G.M. Odegard and R.S. Yassar, Finite Size Effect on the Piezoelectric Properties Of Zno Nanobelts: A Molecular Dynamics Approach, Acta. Mater., 2012, 60(13–14), p 5124.
29.
go back to reference S. Paul, M. Muralles, D. Schwen, M. Short and K. Momeni, A Modified Embedded-Atom Potential for Fe-Cr-Si Alloys, J. Phys. Chem. C., 2021, 125(41), p 22863–22871.CrossRef S. Paul, M. Muralles, D. Schwen, M. Short and K. Momeni, A Modified Embedded-Atom Potential for Fe-Cr-Si Alloys, J. Phys. Chem. C., 2021, 125(41), p 22863–22871.CrossRef
30.
go back to reference S. Paul, D. Schwen, M.P. Short and K. Momeni, Effect of Irradiation on Ni-Inconel/Incoloy Heterostructures In Multimetallic Layered Composites, J. Nucl. Mater., 2021, 547, 152778.CrossRef S. Paul, D. Schwen, M.P. Short and K. Momeni, Effect of Irradiation on Ni-Inconel/Incoloy Heterostructures In Multimetallic Layered Composites, J. Nucl. Mater., 2021, 547, 152778.CrossRef
34.
go back to reference K. Momeni, Y. Ji, K. Zhang, J.A. Robinson and L.-Q., Chen, Multiscale Framework for Simulation-Guided Growth of 2D Ma##terials, npj 2D Mater, Appl., 2018, 2(1), p 27. K. Momeni, Y. Ji, K. Zhang, J.A. Robinson and L.-Q., Chen, Multiscale Framework for Simulation-Guided Growth of 2D Ma##terials, npj 2D Mater, Appl., 2018, 2(1), p 27.
35.
go back to reference I. Steinbach, Phase-Field Models In Materials Science, Model. Simul. Mater. Sci. Eng., 2009, 17(7), p 73001.CrossRef I. Steinbach, Phase-Field Models In Materials Science, Model. Simul. Mater. Sci. Eng., 2009, 17(7), p 73001.CrossRef
38.
go back to reference S.Y. Hu and L.Q. Chen, A Phase-Field Model for Evolving Microstructures With Strong Elastic Inhomogeneity, Acta Mater., 2001, 49(11), p 1879–1890.CrossRef S.Y. Hu and L.Q. Chen, A Phase-Field Model for Evolving Microstructures With Strong Elastic Inhomogeneity, Acta Mater., 2001, 49(11), p 1879–1890.CrossRef
39.
go back to reference D.A. Cogswell and M.Z. Bazant, Theory of Coherent Nucleation In Phase-Separating Nanoparticles, Nano Lett., 2013, 13(7), p 3036–3041.CrossRef D.A. Cogswell and M.Z. Bazant, Theory of Coherent Nucleation In Phase-Separating Nanoparticles, Nano Lett., 2013, 13(7), p 3036–3041.CrossRef
40.
go back to reference G.A. Holzapfel, Nonlinear Solid Mechanics: a Continuum Approach for Engineering Science, Meccanica, 2002, 37(4), p 489–490.CrossRef G.A. Holzapfel, Nonlinear Solid Mechanics: a Continuum Approach for Engineering Science, Meccanica, 2002, 37(4), p 489–490.CrossRef
41.
go back to reference V.I. Levitas, B.F. Henson, L.B. Smilowitz and B.W., Asay, solid-Solid Phase Transformation Via Virtual Melting Significantly Below the Melting Temperature, Phys. Rev. Lett., 2004, 92(23), p 235702.CrossRef V.I. Levitas, B.F. Henson, L.B. Smilowitz and B.W., Asay, solid-Solid Phase Transformation Via Virtual Melting Significantly Below the Melting Temperature, Phys. Rev. Lett., 2004, 92(23), p 235702.CrossRef
43.
go back to reference V.I. Levitas and D.L. Preston, Three-Dimensional Landau Theory for Multivariant Stress-Induced Martensitic Phase Transformations Ii\Quadmultivariant Phase Transformations And Stress Space Analysis, Phys. Rev. B, 2002, 66(13), p 134207.CrossRef V.I. Levitas and D.L. Preston, Three-Dimensional Landau Theory for Multivariant Stress-Induced Martensitic Phase Transformations Ii\Quadmultivariant Phase Transformations And Stress Space Analysis, Phys. Rev. B, 2002, 66(13), p 134207.CrossRef
44.
go back to reference V.I. Levitas and D.L. Preston, Three-Dimensional Landau Theory For Multivariant Stress-Induced Martensitic Phase Transformations I Austenite(Formula Presented)Martensite, Phys. Rev. B., 2002, 66(13), p 134206.CrossRef V.I. Levitas and D.L. Preston, Three-Dimensional Landau Theory For Multivariant Stress-Induced Martensitic Phase Transformations I Austenite(Formula Presented)Martensite, Phys. Rev. B., 2002, 66(13), p 134206.CrossRef
45.
go back to reference W.D. Kingery and M. Humenik Jr., Surface Tension at Elevated Temperatures. i. Furnace and Method for Use of the Sessile Drop Method; Surface Tension of Silicon, Iron and Nickel, J. Phys. Chem., 1953, 57(3), p 359–363.CrossRef W.D. Kingery and M. Humenik Jr., Surface Tension at Elevated Temperatures. i. Furnace and Method for Use of the Sessile Drop Method; Surface Tension of Silicon, Iron and Nickel, J. Phys. Chem., 1953, 57(3), p 359–363.CrossRef
Metadata
Title
Engineering the Surface Melt for In-Space Manufacturing of Aluminum Parts
Authors
Kasra Momeni
Sara Neshani
Chukwudalu Uba
Huan Ding
Jonathan Raush
Shengmin Guo
Publication date
16-06-2022
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 8/2022
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-07054-2

Other articles of this Issue 8/2022

Journal of Materials Engineering and Performance 8/2022 Go to the issue

Premium Partners