Skip to main content
Top
Published in: Cellulose 10/2017

22-07-2017 | Original Paper

Enhanced bacterial cellulose production from Gluconobacter xylinus using super optimal broth

Authors: Prathna T. Chandrasekaran, Naimat Kalim Bari, Sharmistha Sinha

Published in: Cellulose | Issue 10/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The bacterial cellulose (BC) produced by Gluconobacter xylinus due to its versatile properties, is used in healthcare and industrial applications. However, its use is restricted owing to the limited yield from the existing culture protocols. In the current study, BC production is studied in the presence of Super Optimal Broth with catabolite repression (SOC) medium which is used to revive Escherichia coli cells after electroporation or chemoporation. In SOC medium, Gluconobacter xylinus produces cellulose pellicles within 5 days of incubation with an enhanced conversion of the carbon source to cellulose compared to traditional Hestrin–Schramm (HS) medium. SOC medium also maintains the pH close to 7.0 in static cultures unlike in HS medium where the pH is acidic. The physico-chemical and morphological characteristics of the BC produced in SOC are determined using powder X-ray diffraction (pXRD), thermo gravimetric analysis (TGA), Brunauer–Emmett–Teller (BET) and Barrett–Joyner–Halenda (BJH), and scanning electron microscopy (SEM) analyses. Our results indicate that SOC enhance the yield of bacterial cellulose and allows conversion of 50% of the carbon source to bacterial cellulose, compared to only 7% conversion in the case of traditional HS medium after 7 days of interaction. We also observe an increase in hydration capacity of BC produced using SOC as compared to HS media.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Amin MCIM, Abadi AG, Katas H (2014) Purification, characterization and comparative studies of spray-dried bacterial cellulose microparticles. Carbohydr Polym 99:180–189CrossRef Amin MCIM, Abadi AG, Katas H (2014) Purification, characterization and comparative studies of spray-dried bacterial cellulose microparticles. Carbohydr Polym 99:180–189CrossRef
go back to reference Bae S, Shoda M (2004) Bacterial cellulose production by fed-batch fermentation in molasses medium. Biotechnol Prog 20(5):1366–1371CrossRef Bae S, Shoda M (2004) Bacterial cellulose production by fed-batch fermentation in molasses medium. Biotechnol Prog 20(5):1366–1371CrossRef
go back to reference Bakre LG, Jaiyeaoba KT (2009) Effects of drying methods on the physicochemical and compressional characteristics of okra powder and the release properties of its metronidazole tablet formulation. Arch Pharm Res 32(2):259–267. doi:10.1007/s12272-009-1231-0 CrossRef Bakre LG, Jaiyeaoba KT (2009) Effects of drying methods on the physicochemical and compressional characteristics of okra powder and the release properties of its metronidazole tablet formulation. Arch Pharm Res 32(2):259–267. doi:10.​1007/​s12272-009-1231-0 CrossRef
go back to reference Barud HS, Ribeiro CA, Crespi M, Martines MAU, Dexpert-Ghys J, Marques RFC, Messaddeq Y, Ribeiro SJL (2007) Thermal characterization of bacterial cellulose–phosphate composite membranes. J Therm Anal Calorim 87(3):815–818CrossRef Barud HS, Ribeiro CA, Crespi M, Martines MAU, Dexpert-Ghys J, Marques RFC, Messaddeq Y, Ribeiro SJL (2007) Thermal characterization of bacterial cellulose–phosphate composite membranes. J Therm Anal Calorim 87(3):815–818CrossRef
go back to reference Basu S, Omadjela O, Gaddes D, Tadigadapa S, Zimmer J, Catchmark JM (2016) Cellulose microfibril formation by surface-tethered cellulose synthase enzymes. ACS Nano 10(2):1896–1907CrossRef Basu S, Omadjela O, Gaddes D, Tadigadapa S, Zimmer J, Catchmark JM (2016) Cellulose microfibril formation by surface-tethered cellulose synthase enzymes. ACS Nano 10(2):1896–1907CrossRef
go back to reference Çakar F, Katı A, Özer I, Demirbağ DD, Şahin F, Aytekin AÖ (2014) Newly developed medium and strategy for bacterial cellulose production. Biochem Eng J 92:35–40CrossRef Çakar F, Katı A, Özer I, Demirbağ DD, Şahin F, Aytekin AÖ (2014) Newly developed medium and strategy for bacterial cellulose production. Biochem Eng J 92:35–40CrossRef
go back to reference Chawla PR, Bajaj IB, Survase SA, Singhal RS (2009) Microbial cellulose: fermentative production and applications. Food Technol Biotechnol 47(2):107–124 Chawla PR, Bajaj IB, Survase SA, Singhal RS (2009) Microbial cellulose: fermentative production and applications. Food Technol Biotechnol 47(2):107–124
go back to reference Cheng K-C, Catchmark JM, Demirci A (2009) Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis. J Biol Eng 3:12CrossRef Cheng K-C, Catchmark JM, Demirci A (2009) Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis. J Biol Eng 3:12CrossRef
go back to reference Dai F, Zai J, Yi R, Gordin ML, Sohn H, Chen S, Wang D (2014) Bottom-up synthesis of high surface area mesoporous crystalline silicon and evaluation of its hydrogen evolution performance. Nat Commun 5:3605. doi:10.1038/ncomms4605 Dai F, Zai J, Yi R, Gordin ML, Sohn H, Chen S, Wang D (2014) Bottom-up synthesis of high surface area mesoporous crystalline silicon and evaluation of its hydrogen evolution performance. Nat Commun 5:3605. doi:10.​1038/​ncomms4605
go back to reference Ehrhardt A, Groner S, Bechtold T (2007) Swelling behaviour of cellulosic fibres. Part 1, changes in physical properties. Fibres Text Eastern Eur 5–6(64):46–48 Ehrhardt A, Groner S, Bechtold T (2007) Swelling behaviour of cellulosic fibres. Part 1, changes in physical properties. Fibres Text Eastern Eur 5–6(64):46–48
go back to reference Embuscado ME, Marks JS, BeMiller JN (1994) Bacterial cellulose. I. Factors affecting the production of cellulose by Acetobacter xylinum. Food Hydrocoll 8(5):407–418CrossRef Embuscado ME, Marks JS, BeMiller JN (1994) Bacterial cellulose. I. Factors affecting the production of cellulose by Acetobacter xylinum. Food Hydrocoll 8(5):407–418CrossRef
go back to reference Erbas Kiziltas E, Kiziltas A, Blumentritt M, Gardner DJ (2015) Biosynthesis of bacterial cellulose in the presence of different nanoparticles to create novel hybrid materials. Carbohydr Polym 129:148–155CrossRef Erbas Kiziltas E, Kiziltas A, Blumentritt M, Gardner DJ (2015) Biosynthesis of bacterial cellulose in the presence of different nanoparticles to create novel hybrid materials. Carbohydr Polym 129:148–155CrossRef
go back to reference Esa F, Tasirin SM, Rahman NA (2014) Overview of bacterial cellulose production and application. Agric Agric Sci Proc 2:113–119 Esa F, Tasirin SM, Rahman NA (2014) Overview of bacterial cellulose production and application. Agric Agric Sci Proc 2:113–119
go back to reference Fang L, Catchmark JM (2015) Characterization of cellulose and other exopolysaccharides produced from Gluconacetobacter strains. Carbohydr Polym 115:663–669CrossRef Fang L, Catchmark JM (2015) Characterization of cellulose and other exopolysaccharides produced from Gluconacetobacter strains. Carbohydr Polym 115:663–669CrossRef
go back to reference Fierro F, Laich F, Garcı RO, Martı JF (2004) High efficiency transformation of Penicillium nalgiovense with integrative and autonomously replicating plasmids. Int J Food Microbiol 90(2):237–248CrossRef Fierro F, Laich F, Garcı RO, Martı JF (2004) High efficiency transformation of Penicillium nalgiovense with integrative and autonomously replicating plasmids. Int J Food Microbiol 90(2):237–248CrossRef
go back to reference French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21(2):885–896CrossRef French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21(2):885–896CrossRef
go back to reference French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the Segal Crystallinity Index. Cellulose 20(1):583–588CrossRef French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the Segal Crystallinity Index. Cellulose 20(1):583–588CrossRef
go back to reference Gao C, Wan Y, Yang C, Dai K, Tang T, Luo H, Wang J (2011) Preparation and characterization of bacterial cellulose sponge with hierarchical pore structure as tissue engineering scaffold. J Porous Mater 18(2):139–145CrossRef Gao C, Wan Y, Yang C, Dai K, Tang T, Luo H, Wang J (2011) Preparation and characterization of bacterial cellulose sponge with hierarchical pore structure as tissue engineering scaffold. J Porous Mater 18(2):139–145CrossRef
go back to reference Gorke B, Stulke J (2008) Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 6(8):613–624CrossRef Gorke B, Stulke J (2008) Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 6(8):613–624CrossRef
go back to reference Guo J, Catchmark JM (2012) Surface area and porosity of acid hydrolyzed cellulose nanowhiskers and cellulose produced by Gluconacetobacter xylinus. Carbohydr Polym 87(2):1026–1037CrossRef Guo J, Catchmark JM (2012) Surface area and porosity of acid hydrolyzed cellulose nanowhiskers and cellulose produced by Gluconacetobacter xylinus. Carbohydr Polym 87(2):1026–1037CrossRef
go back to reference Halib N, Amin MCIM, Ahmad I (2010) Unique stimuli responsive characteristics of electron beam synthesized bacterial cellulose/acrylic acid composite. J Appl Polym Sci 116(5):2920–2929 Halib N, Amin MCIM, Ahmad I (2010) Unique stimuli responsive characteristics of electron beam synthesized bacterial cellulose/acrylic acid composite. J Appl Polym Sci 116(5):2920–2929
go back to reference Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166(4):557–580CrossRef Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166(4):557–580CrossRef
go back to reference Hestrin S, Schramm M (1954) Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J 58(2):345–352CrossRef Hestrin S, Schramm M (1954) Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J 58(2):345–352CrossRef
go back to reference Hirai A, Tsuji M, Yamamoto H, Horii F (1998) In situ crystallization of bacterial cellulose III. Influences of different polymeric additives on the formation of microfibrils as revealed by transmission electron microscopy. Cellulose 5(3):201–213CrossRef Hirai A, Tsuji M, Yamamoto H, Horii F (1998) In situ crystallization of bacterial cellulose III. Influences of different polymeric additives on the formation of microfibrils as revealed by transmission electron microscopy. Cellulose 5(3):201–213CrossRef
go back to reference Hong F, Qiu K (2008) An alternative carbon source from konjac powder for enhancing production of bacterial cellulose in static cultures by a model strain Acetobacter aceti subsp. xylinus ATCC 23770. Carbohydr Polym 72(3):545–549CrossRef Hong F, Qiu K (2008) An alternative carbon source from konjac powder for enhancing production of bacterial cellulose in static cultures by a model strain Acetobacter aceti subsp. xylinus ATCC 23770. Carbohydr Polym 72(3):545–549CrossRef
go back to reference Huang C, Yang XY, Xiong L, Guo HJ, Luo J, Wang B, Zhang HR, Lin XQ, Chen XD (2015a) Evaluating the possibility of using acetone-butanol–ethanol (ABE) fermentation wastewater for bacterial cellulose production by Gluconacetobacter xylinus. Lett Appl Microbiol 60(5):491–496CrossRef Huang C, Yang XY, Xiong L, Guo HJ, Luo J, Wang B, Zhang HR, Lin XQ, Chen XD (2015a) Evaluating the possibility of using acetone-butanol–ethanol (ABE) fermentation wastewater for bacterial cellulose production by Gluconacetobacter xylinus. Lett Appl Microbiol 60(5):491–496CrossRef
go back to reference Huang C, Yang XY, Xiong L, Guo HJ, Luo J, Wang B, Zhang HR, Lin XQ, Chen XD (2015b) Utilization of corncob acid hydrolysate for bacterial cellulose production by Gluconacetobacter xylinus. Appl Biochem Biotechnol 175(3):1678–1688CrossRef Huang C, Yang XY, Xiong L, Guo HJ, Luo J, Wang B, Zhang HR, Lin XQ, Chen XD (2015b) Utilization of corncob acid hydrolysate for bacterial cellulose production by Gluconacetobacter xylinus. Appl Biochem Biotechnol 175(3):1678–1688CrossRef
go back to reference Karada E, Saraydin D (2002) Swelling of superabsorbent acrylamide/sodium acrylate hydrogels prepared using multifunctional crosslinkers. Turk J Chem 26(6):863–875 Karada E, Saraydin D (2002) Swelling of superabsorbent acrylamide/sodium acrylate hydrogels prepared using multifunctional crosslinkers. Turk J Chem 26(6):863–875
go back to reference Keshk SM (2014) Vitamin C enhances bacterial cellulose production in Gluconacetobacter xylinus. Carbohydr Polym 99:98–100CrossRef Keshk SM (2014) Vitamin C enhances bacterial cellulose production in Gluconacetobacter xylinus. Carbohydr Polym 99:98–100CrossRef
go back to reference Khan T, Khan S, Park J (2008) Simple fed-batch cultivation strategy for the enhanced production of a single-sugar glucuronic acid-based oligosaccharides by a cellulose-producing Gluconacetobacter hansenii strain. Biotechnol Bioprocess Eng 13(2):240–247CrossRef Khan T, Khan S, Park J (2008) Simple fed-batch cultivation strategy for the enhanced production of a single-sugar glucuronic acid-based oligosaccharides by a cellulose-producing Gluconacetobacter hansenii strain. Biotechnol Bioprocess Eng 13(2):240–247CrossRef
go back to reference Klemm D, Schumann D, Kramer F, Heßler N, Hornung M, Schmauder H-P, Marsch S (2006) Nanocelluloses as innovative polymers in research and application. Polysaccharides II. D 205:49–96CrossRef Klemm D, Schumann D, Kramer F, Heßler N, Hornung M, Schmauder H-P, Marsch S (2006) Nanocelluloses as innovative polymers in research and application. Polysaccharides II. D 205:49–96CrossRef
go back to reference Kuo C-H, Chen J-H, Liou B-K, Lee C-K (2016) Utilization of acetate buffer to improve bacterial cellulose production by Gluconacetobacter xylinus. Food Hydrocoll 53:98–103CrossRef Kuo C-H, Chen J-H, Liou B-K, Lee C-K (2016) Utilization of acetate buffer to improve bacterial cellulose production by Gluconacetobacter xylinus. Food Hydrocoll 53:98–103CrossRef
go back to reference Kurosumi A, Sasaki C, Yamashita Y, Nakamura Y (2009) Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohydr Polym 76(2):333–335CrossRef Kurosumi A, Sasaki C, Yamashita Y, Nakamura Y (2009) Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohydr Polym 76(2):333–335CrossRef
go back to reference Li Z, Wang L, Hua J, Jia S, Zhang J, Liu H (2015) Production of nano bacterial cellulose from waste water of candied jujube-processing industry using Acetobacter xylinum. Carbohydr Polym 120:115–119CrossRef Li Z, Wang L, Hua J, Jia S, Zhang J, Liu H (2015) Production of nano bacterial cellulose from waste water of candied jujube-processing industry using Acetobacter xylinum. Carbohydr Polym 120:115–119CrossRef
go back to reference Lin W-C, Lien C-C, Yeh H-J, Yu C-M, Hsu S-H (2013) Bacterial cellulose and bacterial cellulose–chitosan membranes for wound dressing applications. Carbohydr Polym 94(1):603–611CrossRef Lin W-C, Lien C-C, Yeh H-J, Yu C-M, Hsu S-H (2013) Bacterial cellulose and bacterial cellulose–chitosan membranes for wound dressing applications. Carbohydr Polym 94(1):603–611CrossRef
go back to reference Lin D, Lopez-Sanchez P, Li R, Li Z (2014) Production of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917 using only waste beer yeast as nutrient source. Biores Technol 151:113–119CrossRef Lin D, Lopez-Sanchez P, Li R, Li Z (2014) Production of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917 using only waste beer yeast as nutrient source. Biores Technol 151:113–119CrossRef
go back to reference Maeda S, Sawamura A, Matsuda A (2004) Transformation of colonial Escherichia coli on solid media. FEMS Microbiol Lett 236(1):61–64CrossRef Maeda S, Sawamura A, Matsuda A (2004) Transformation of colonial Escherichia coli on solid media. FEMS Microbiol Lett 236(1):61–64CrossRef
go back to reference Mohamad N, Mohd Amin MCI, Pandey M, Ahmad N, Rajab NF (2014) Bacterial cellulose/acrylic acid hydrogel synthesized via electron beam irradiation: accelerated burn wound healing in an animal model. Carbohydr Polym 114:312–320CrossRef Mohamad N, Mohd Amin MCI, Pandey M, Ahmad N, Rajab NF (2014) Bacterial cellulose/acrylic acid hydrogel synthesized via electron beam irradiation: accelerated burn wound healing in an animal model. Carbohydr Polym 114:312–320CrossRef
go back to reference Mohammadkazemi F, Azin M, Ashori A (2015) Production of bacterial cellulose using different carbon sources and culture media. Carbohydr Polym 117:518–523CrossRef Mohammadkazemi F, Azin M, Ashori A (2015) Production of bacterial cellulose using different carbon sources and culture media. Carbohydr Polym 117:518–523CrossRef
go back to reference Mohite BV, Patil SV (2014) Physical, structural, mechanical and thermal characterization of bacterial cellulose by G. hansenii NCIM 2529. Carbohydr Polym 106:132–141CrossRef Mohite BV, Patil SV (2014) Physical, structural, mechanical and thermal characterization of bacterial cellulose by G. hansenii NCIM 2529. Carbohydr Polym 106:132–141CrossRef
go back to reference Nguyen V, Flanagan B, Gidley M, Dykes G (2008) Characterization of cellulose production by a Gluconacetobacter xylinus strain from Kombucha. Curr Microbiol 57(5):449–453CrossRef Nguyen V, Flanagan B, Gidley M, Dykes G (2008) Characterization of cellulose production by a Gluconacetobacter xylinus strain from Kombucha. Curr Microbiol 57(5):449–453CrossRef
go back to reference Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51(6):730–750CrossRef Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51(6):730–750CrossRef
go back to reference Norouzian D, Farhangi A, Tolooei S, Saffari Z, Mehrabi MR, Chiani M, Ghassemi S, Farahnak M, Akbarzadeh A (2011) Study of nano-fiber cellulose production by Glucanacetobacter xylinum ATCC 10245. Pak J Biol Sci PJBS 14(15):780–784CrossRef Norouzian D, Farhangi A, Tolooei S, Saffari Z, Mehrabi MR, Chiani M, Ghassemi S, Farahnak M, Akbarzadeh A (2011) Study of nano-fiber cellulose production by Glucanacetobacter xylinum ATCC 10245. Pak J Biol Sci PJBS 14(15):780–784CrossRef
go back to reference Oliveira Barud HG, Barud Hda S, Cavicchioli M, do Amaral TS, de Oliveira OB Jr, Santos DM, Petersen AL, Celes F, Borges VM, de Oliveira CI, Furtado RA, Tavares DC, Ribeiro SJ (2015) Preparation and characterization of a bacterial cellulose/silk fibroin sponge scaffold for tissue regeneration. Carbohydr Polym 128:41–51CrossRef Oliveira Barud HG, Barud Hda S, Cavicchioli M, do Amaral TS, de Oliveira OB Jr, Santos DM, Petersen AL, Celes F, Borges VM, de Oliveira CI, Furtado RA, Tavares DC, Ribeiro SJ (2015) Preparation and characterization of a bacterial cellulose/silk fibroin sponge scaffold for tissue regeneration. Carbohydr Polym 128:41–51CrossRef
go back to reference Omadjela O, Narahari A, Strumillo J, Mélida H, Mazur O, Bulone V, Zimmer J (2013) BcsA and BcsB form the catalytically active core of bacterial cellulose synthase sufficient for in vitro cellulose synthesis. Proc Natl Acad Sci 110(44):17856–17861CrossRef Omadjela O, Narahari A, Strumillo J, Mélida H, Mazur O, Bulone V, Zimmer J (2013) BcsA and BcsB form the catalytically active core of bacterial cellulose synthase sufficient for in vitro cellulose synthesis. Proc Natl Acad Sci 110(44):17856–17861CrossRef
go back to reference Park S, Park J, Jo I, Cho SP, Sung D, Ryu S, Park M, Min KA, Kim J, Hong S, Hong BH, Kim BS (2015) In situ hybridization of carbon nanotubes with bacterial cellulose for three-dimensional hybrid bioscaffolds. Biomaterials 58:93–102CrossRef Park S, Park J, Jo I, Cho SP, Sung D, Ryu S, Park M, Min KA, Kim J, Hong S, Hong BH, Kim BS (2015) In situ hybridization of carbon nanotubes with bacterial cellulose for three-dimensional hybrid bioscaffolds. Biomaterials 58:93–102CrossRef
go back to reference Rambo CR, Recouvreux DOS, Carminatti CA, Pitlovanciv AK, Antônio RV, Porto LM (2008) Template assisted synthesis of porous nanofibrous cellulose membranes for tissue engineering. Mater Sci Eng C 28(4):549–554CrossRef Rambo CR, Recouvreux DOS, Carminatti CA, Pitlovanciv AK, Antônio RV, Porto LM (2008) Template assisted synthesis of porous nanofibrous cellulose membranes for tissue engineering. Mater Sci Eng C 28(4):549–554CrossRef
go back to reference Römling U, Galperin MY (2015) Bacterial cellulose biosynthesis: diversity of operons, subunits, products, and functions. Trends Microbiol 23(9):545–557CrossRef Römling U, Galperin MY (2015) Bacterial cellulose biosynthesis: diversity of operons, subunits, products, and functions. Trends Microbiol 23(9):545–557CrossRef
go back to reference Ruka DR, Simon GP, Dean KM (2012) Altering the growth conditions of Gluconacetobacter xylinus to maximize the yield of bacterial cellulose. Carbohydr Polym 89(2):613–622CrossRef Ruka DR, Simon GP, Dean KM (2012) Altering the growth conditions of Gluconacetobacter xylinus to maximize the yield of bacterial cellulose. Carbohydr Polym 89(2):613–622CrossRef
go back to reference Samavat F, Ali EH, Solgi S, Ahmad PT (2012) KCl single crystals growth with Mn, Ag and in impurities by Czochralski method and study of impurities influence on their properties. Open J Phys Chem 2(3):4CrossRef Samavat F, Ali EH, Solgi S, Ahmad PT (2012) KCl single crystals growth with Mn, Ag and in impurities by Czochralski method and study of impurities influence on their properties. Open J Phys Chem 2(3):4CrossRef
go back to reference Saxena IM, Kudlicka K, Okuda K, Brown R (1994) Characterization of genes in the cellulose-synthesizing operon (acs operon) of Acetobacter xylinum: implications for cellulose crystallization. J Bacteriol 176(18):5735–5752CrossRef Saxena IM, Kudlicka K, Okuda K, Brown R (1994) Characterization of genes in the cellulose-synthesizing operon (acs operon) of Acetobacter xylinum: implications for cellulose crystallization. J Bacteriol 176(18):5735–5752CrossRef
go back to reference Schlesinger M, Hamad WY, MacLachlan MJ (2015) Optically tunable chiral nematic mesoporous cellulose films. Soft Matter 11(23):4686–4694CrossRef Schlesinger M, Hamad WY, MacLachlan MJ (2015) Optically tunable chiral nematic mesoporous cellulose films. Soft Matter 11(23):4686–4694CrossRef
go back to reference Segal L, Creely JJ, Martin JAE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794CrossRef Segal L, Creely JJ, Martin JAE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794CrossRef
go back to reference Shah J, Malcolm Brown R Jr (2005) Towards electronic paper displays made from microbial cellulose. Appl Microbiol Biotechnol 66(4):352–355CrossRef Shah J, Malcolm Brown R Jr (2005) Towards electronic paper displays made from microbial cellulose. Appl Microbiol Biotechnol 66(4):352–355CrossRef
go back to reference Shezad O, Khan S, Khan T, Park JK (2010) Physicochemical and mechanical characterization of bacterial cellulose produced with an excellent productivity in static conditions using a simple fed-batch cultivation strategy. Carbohydr Polym 82(1):173–180CrossRef Shezad O, Khan S, Khan T, Park JK (2010) Physicochemical and mechanical characterization of bacterial cellulose produced with an excellent productivity in static conditions using a simple fed-batch cultivation strategy. Carbohydr Polym 82(1):173–180CrossRef
go back to reference Son H-J, Heo M-S, Kim Y-G, Lee S-J (2001) Optimization of fermentation conditions for the production of bacterial cellulose by a newly isolated Acetobacter. Biotechnol Appl Biochem 33(1):1–5CrossRef Son H-J, Heo M-S, Kim Y-G, Lee S-J (2001) Optimization of fermentation conditions for the production of bacterial cellulose by a newly isolated Acetobacter. Biotechnol Appl Biochem 33(1):1–5CrossRef
go back to reference Sun Q-Y, Ding L-W, He L-L, Sun Y-B, Shao J-L, Luo M, Xu Z-F (2009) Culture of Escherichia coli in SOC medium improves the cloning efficiency of toxic protein genes. Anal Biochem 394(1):144–146CrossRef Sun Q-Y, Ding L-W, He L-L, Sun Y-B, Shao J-L, Luo M, Xu Z-F (2009) Culture of Escherichia coli in SOC medium improves the cloning efficiency of toxic protein genes. Anal Biochem 394(1):144–146CrossRef
go back to reference Tabarsa T, Sheykhnazari S, Ashori A, Mashkour M, Khazaeian A (2017) Preparation and characterization of reinforced papers using nano bacterial cellulose. Int J Biol Macromol 101:334–340CrossRef Tabarsa T, Sheykhnazari S, Ashori A, Mashkour M, Khazaeian A (2017) Preparation and characterization of reinforced papers using nano bacterial cellulose. Int J Biol Macromol 101:334–340CrossRef
go back to reference Ul-Islam M, Khan T, Park JK (2012) Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohydr Polym 88(2):596–603CrossRef Ul-Islam M, Khan T, Park JK (2012) Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohydr Polym 88(2):596–603CrossRef
go back to reference Ul-Islam M, Ha JH, Khan T, Park JK (2013) Effects of glucuronic acid oligomers on the production, structure and properties of bacterial cellulose. Carbohydr Polym 92(1):360–366CrossRef Ul-Islam M, Ha JH, Khan T, Park JK (2013) Effects of glucuronic acid oligomers on the production, structure and properties of bacterial cellulose. Carbohydr Polym 92(1):360–366CrossRef
go back to reference Vasconcelos NF, Feitosa JPA, da Gama FMP, Morais JPS, Andrade FK, de Souza MDSM, de Freitas Rosa M (2017) Bacterial cellulose nanocrystals produced under different hydrolysis conditions: properties and morphological features. Carbohydr Polym 155:425–431CrossRef Vasconcelos NF, Feitosa JPA, da Gama FMP, Morais JPS, Andrade FK, de Souza MDSM, de Freitas Rosa M (2017) Bacterial cellulose nanocrystals produced under different hydrolysis conditions: properties and morphological features. Carbohydr Polym 155:425–431CrossRef
go back to reference Vazquez A, Foresti M, Cerrutti P, Galvagno M (2013) Bacterial cellulose from simple and low cost production media by Gluconacetobacter xylinus. J Polym Environ 21(2):545–554CrossRef Vazquez A, Foresti M, Cerrutti P, Galvagno M (2013) Bacterial cellulose from simple and low cost production media by Gluconacetobacter xylinus. J Polym Environ 21(2):545–554CrossRef
go back to reference Watanabe K, Tabuchi M, Morinaga Y, Yoshinaga F (1998) Structural features and properties of bacterial cellulose produced in agitated culture. Cellulose 5(3):187–200CrossRef Watanabe K, Tabuchi M, Morinaga Y, Yoshinaga F (1998) Structural features and properties of bacterial cellulose produced in agitated culture. Cellulose 5(3):187–200CrossRef
go back to reference Wei B, Yang G, Hong F (2011) Preparation and evaluation of a kind of bacterial cellulose dry films with antibacterial properties. Carbohydr Polym 84(1):533–538CrossRef Wei B, Yang G, Hong F (2011) Preparation and evaluation of a kind of bacterial cellulose dry films with antibacterial properties. Carbohydr Polym 84(1):533–538CrossRef
go back to reference Wu J-M, Liu R-H (2012) Thin stillage supplementation greatly enhances bacterial cellulose production by Gluconacetobacter xylinus. Carbohydr Polym 90(1):116–121CrossRef Wu J-M, Liu R-H (2012) Thin stillage supplementation greatly enhances bacterial cellulose production by Gluconacetobacter xylinus. Carbohydr Polym 90(1):116–121CrossRef
go back to reference Yang XY, Huang C, Guo HJ, Xiong L, Luo J, Wang B, Chen XF, Lin XQ, Chen XD (2014) Beneficial effect of acetic acid on the xylose utilization and bacterial cellulose production by Gluconacetobacter xylinus. Indian J Microbiol 54(3):268–273CrossRef Yang XY, Huang C, Guo HJ, Xiong L, Luo J, Wang B, Chen XF, Lin XQ, Chen XD (2014) Beneficial effect of acetic acid on the xylose utilization and bacterial cellulose production by Gluconacetobacter xylinus. Indian J Microbiol 54(3):268–273CrossRef
go back to reference Yang XY, Huang C, Guo HJ, Xiong L, Luo J, Wang B, Lin XQ, Chen XF, Chen XD (2016) Bacterial cellulose production from the litchi extract by Gluconacetobacter xylinus. Prep Biochem Biotechnol 46(1):39–43CrossRef Yang XY, Huang C, Guo HJ, Xiong L, Luo J, Wang B, Lin XQ, Chen XF, Chen XD (2016) Bacterial cellulose production from the litchi extract by Gluconacetobacter xylinus. Prep Biochem Biotechnol 46(1):39–43CrossRef
go back to reference Zeng X, Small DP, Wan W (2011) Statistical optimization of culture conditions for bacterial cellulose production by Acetobacter xylinum BPR 2001 from maple syrup. Carbohydr Polym 85(3):506–513CrossRef Zeng X, Small DP, Wan W (2011) Statistical optimization of culture conditions for bacterial cellulose production by Acetobacter xylinum BPR 2001 from maple syrup. Carbohydr Polym 85(3):506–513CrossRef
go back to reference Zhao Y, Koizumi S, Yamaguchi D, Kondo T (2014) Hierarchical structure in microbial cellulose: what happens during the drying process. Eur Phys J E Soft Matter 37(12):129CrossRef Zhao Y, Koizumi S, Yamaguchi D, Kondo T (2014) Hierarchical structure in microbial cellulose: what happens during the drying process. Eur Phys J E Soft Matter 37(12):129CrossRef
Metadata
Title
Enhanced bacterial cellulose production from Gluconobacter xylinus using super optimal broth
Authors
Prathna T. Chandrasekaran
Naimat Kalim Bari
Sharmistha Sinha
Publication date
22-07-2017
Publisher
Springer Netherlands
Published in
Cellulose / Issue 10/2017
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-017-1419-2

Other articles of this Issue 10/2017

Cellulose 10/2017 Go to the issue