Skip to main content
Top
Published in: Neural Processing Letters 3/2019

18-06-2018

Enhanced Bird Detection from Low-Resolution Aerial Image Using Deep Neural Networks

Authors: Ce Li, Baochang Zhang, Hanwen Hu, Jing Dai

Published in: Neural Processing Letters | Issue 3/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Bird detection in LR images is essential for the applications of unmanned aerial vehicles. It is still a challenging task because traditional discriminative features in high-resolution (HR) usually disappear in low-resolution (LR) images. Although recent advances in single image super-resolution (SISR) and object detection algorithms have offered unprecedented potential for computer-automated reconstructing LR images and detecting various objects, these algorithms are mainly evaluated using synthetic datasets. It is unclear how these algorithms would perform on bird images acquired in the wild and how we could gauge the progress in the real-time bird detection. This paper presents a novel bird detection framework in LR aerial images using deep neural networks (DNN). We collect a dataset named BIRD-50 and a public dataset named CUB-200 of real bird images with different scale low-resolutions. Using these datasets, we introduce a novel DNN based framework for bird detection in reconstructed HR images, which exploits the mapping function from LR to HR aerial image and detects the birds by the state-of-the-art object feature extraction and localization methods. By systematically analyzing the influence of the resolution reduction on the bird detection, the experimental results indicate that our approach has produced significantly improved detection precision for bird detection by the inclusion of SISR algorithms.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
BIRD-50 will be avaliable at the website: https://​github.​com/​bczhang/​bczhang/​.
 
Literature
1.
go back to reference Stowell D, Wood M, Stylianou Y, Glotin H (2016) Bird detection in audio: a survey and a challenge. In: IEEE 26th international workshop on machine learning for signal processing Stowell D, Wood M, Stylianou Y, Glotin H (2016) Bird detection in audio: a survey and a challenge. In: IEEE 26th international workshop on machine learning for signal processing
2.
go back to reference Huang C, Tsai C, Yang H (2011) An extended set of Haar-like features for bird detection based on AdaBoost. In: International conference SIP, Korea Huang C, Tsai C, Yang H (2011) An extended set of Haar-like features for bird detection based on AdaBoost. In: International conference SIP, Korea
3.
go back to reference Li W, Song D (2014) Automatic bird species detection from crowd sourced videos. IEEE Trans Autom Sci Eng 11(2):348–358MathSciNetCrossRef Li W, Song D (2014) Automatic bird species detection from crowd sourced videos. IEEE Trans Autom Sci Eng 11(2):348–358MathSciNetCrossRef
4.
go back to reference Zhang J, Xu Q, Cao X et al (2014) Hierarchical incorporation of shape and shape dynamics for flying bird detection. Neurocomputing 131:179–190CrossRef Zhang J, Xu Q, Cao X et al (2014) Hierarchical incorporation of shape and shape dynamics for flying bird detection. Neurocomputing 131:179–190CrossRef
5.
go back to reference Timofte R, Smet V, Gool L (2013) Anchored neighborhood regression for fast example-based super-resolution. In: IEEE international conference on computer vision, pp 1920–1927 Timofte R, Smet V, Gool L (2013) Anchored neighborhood regression for fast example-based super-resolution. In: IEEE international conference on computer vision, pp 1920–1927
6.
go back to reference Rasti P, Uiboupin T, Escalera S, Anbarjafari G (2016) Convolutional neural network super resolution for face recognition in surveillance monitoring. Springer, Berlin, pp 175–184 Rasti P, Uiboupin T, Escalera S, Anbarjafari G (2016) Convolutional neural network super resolution for face recognition in surveillance monitoring. Springer, Berlin, pp 175–184
7.
go back to reference Kim J, Lee JK, Lee KM (2015) Accurate image super-resolution using very deep convolutional networks. IEEE Trans Pattern Anal Mach Intell 38(2):295–307 Kim J, Lee JK, Lee KM (2015) Accurate image super-resolution using very deep convolutional networks. IEEE Trans Pattern Anal Mach Intell 38(2):295–307
8.
go back to reference Rusk N (2016) Accelerating the super-resolution convolutional neural network. Eur Conf Comput Vis 9905(1):35–35 Rusk N (2016) Accelerating the super-resolution convolutional neural network. Eur Conf Comput Vis 9905(1):35–35
9.
go back to reference ElSayed A, Mahmood A, Sobh T (2017) Effect of super resolution on high dimensional features for unsupervised face recognition in the Wild. arXiv:1704.01464 ElSayed A, Mahmood A, Sobh T (2017) Effect of super resolution on high dimensional features for unsupervised face recognition in the Wild. arXiv:​1704.​01464
10.
go back to reference Wang Z, Liu D, Yang J, Han W, Huang T (2015) Deep networks for image super-resolution with sparse prior. In: International conference on computer vision, pp 370–378 Wang Z, Liu D, Yang J, Han W, Huang T (2015) Deep networks for image super-resolution with sparse prior. In: International conference on computer vision, pp 370–378
11.
go back to reference Dong C, Loy CC, He K, Tang X (2016) Image super-resolution using deep convolutional networks. IEEE Trans Pattern Anal Mach Intell 38(2):295–307CrossRef Dong C, Loy CC, He K, Tang X (2016) Image super-resolution using deep convolutional networks. IEEE Trans Pattern Anal Mach Intell 38(2):295–307CrossRef
12.
go back to reference Tai Y, Yang J, Liu X (2017) Image super-resolution via deep recursive residual network. In: IEEE conference on computer vision and pattern recognition Tai Y, Yang J, Liu X (2017) Image super-resolution via deep recursive residual network. In: IEEE conference on computer vision and pattern recognition
13.
go back to reference Dong C, Loy CC, He K, Tang X (2014) Learning a deep convolutional network for image super-resolution. In: European conference on computer vision, pp 184–199 Dong C, Loy CC, He K, Tang X (2014) Learning a deep convolutional network for image super-resolution. In: European conference on computer vision, pp 184–199
14.
go back to reference Wang Z, Liu D, Yang J, Han W, Huang T (2015) Deep networks for image super-resolution with sparse prior. In: IEEE international conference on computer vision, pp 370–378 Wang Z, Liu D, Yang J, Han W, Huang T (2015) Deep networks for image super-resolution with sparse prior. In: IEEE international conference on computer vision, pp 370–378
16.
go back to reference Yang L, Li C, Han J, Chen C, Ye Q, Zhang B, Cao X, Liu W (2017) Image reconstruction via manifold constrained convolutional sparse coding for image sets. IEEE J Sel Top Signal Process 11(7):1072–1081CrossRef Yang L, Li C, Han J, Chen C, Ye Q, Zhang B, Cao X, Liu W (2017) Image reconstruction via manifold constrained convolutional sparse coding for image sets. IEEE J Sel Top Signal Process 11(7):1072–1081CrossRef
17.
go back to reference Dong C, Chen CL, Tang X (2016) Accelearting the super-resolution convolutional neural networks. In: European conference on computer vision Dong C, Chen CL, Tang X (2016) Accelearting the super-resolution convolutional neural networks. In: European conference on computer vision
18.
go back to reference Uijlings JR, van de Sande KE, Gevers T, Smeul-ders AW (2013) Selective search for object recognition. Int J Comput Vis 104:154–171CrossRef Uijlings JR, van de Sande KE, Gevers T, Smeul-ders AW (2013) Selective search for object recognition. Int J Comput Vis 104:154–171CrossRef
19.
go back to reference Zhang B, Perina A, Li Z, Murino V, Liu J, Ji R (2016) Bounding multiple gaussians uncertainty with application to object tracking. Int J Comput Vis 118(3):364–379MathSciNetCrossRefMATH Zhang B, Perina A, Li Z, Murino V, Liu J, Ji R (2016) Bounding multiple gaussians uncertainty with application to object tracking. Int J Comput Vis 118(3):364–379MathSciNetCrossRefMATH
20.
go back to reference Zhang B, Luan S, Chen C, Han J, Wang W, Perina A, Shao L (2017) Latent constrained correlation filter. IEEE Trans Image Process 27:1038–1048MathSciNetCrossRefMATH Zhang B, Luan S, Chen C, Han J, Wang W, Perina A, Shao L (2017) Latent constrained correlation filter. IEEE Trans Image Process 27:1038–1048MathSciNetCrossRefMATH
21.
go back to reference Zhang B, Li Z, Perina A, Bue A, Murino V, Liu J (2017) Adaptive local movement modeling for robust object tracking. IEEE Trans Circuits Syst Video Technol 27(7):1515–1526CrossRef Zhang B, Li Z, Perina A, Bue A, Murino V, Liu J (2017) Adaptive local movement modeling for robust object tracking. IEEE Trans Circuits Syst Video Technol 27(7):1515–1526CrossRef
22.
go back to reference Yang CY, Yang MH (2013) Fast direct super-resolution by simple functions. In: IEEE international conference on computer vision, pp 561–568 Yang CY, Yang MH (2013) Fast direct super-resolution by simple functions. In: IEEE international conference on computer vision, pp 561–568
23.
go back to reference Yang J, Wright J, Huang TS, Ma Y (2010) Image super-resolution via sparse representation. IEEE Trans Image Process 19(11):2861–2873MathSciNetCrossRefMATH Yang J, Wright J, Huang TS, Ma Y (2010) Image super-resolution via sparse representation. IEEE Trans Image Process 19(11):2861–2873MathSciNetCrossRefMATH
24.
25.
go back to reference Jiwon K, Lee JK, Lee KM (2016) Accurate image super-resolution using very deep convolutional networks. In: IEEE conference on computer vision and pattern recognition, pp 1646–1654 Jiwon K, Lee JK, Lee KM (2016) Accurate image super-resolution using very deep convolutional networks. In: IEEE conference on computer vision and pattern recognition, pp 1646–1654
26.
go back to reference Keys RG (1981) Cubic convolution interpolation for digital image processing. IEEE Trans Acoust Speech Signal Process 29(6):1153–1160MathSciNetCrossRefMATH Keys RG (1981) Cubic convolution interpolation for digital image processing. IEEE Trans Acoust Speech Signal Process 29(6):1153–1160MathSciNetCrossRefMATH
27.
go back to reference Zhang K, Gao X, Tao D, Li X (2012) Single image super-resolution with non-local means and steering kernel regression. IEEE Trans Image Process 21(11):4544–4556MathSciNetCrossRefMATH Zhang K, Gao X, Tao D, Li X (2012) Single image super-resolution with non-local means and steering kernel regression. IEEE Trans Image Process 21(11):4544–4556MathSciNetCrossRefMATH
28.
go back to reference Bevilacqua M, Roumy A, Guillemot C, Alberi-Morel ML (2012) Low-complexity single-image super-resolution based on nonnegative neighbor embedding. In: British machine vision conference, pp 1–10 Bevilacqua M, Roumy A, Guillemot C, Alberi-Morel ML (2012) Low-complexity single-image super-resolution based on nonnegative neighbor embedding. In: British machine vision conference, pp 1–10
29.
go back to reference Dong C, Chen CL, He K (2014) Image super-resolution using deep convolutional networks. IEEE Trans Pattern Anal Mach Intell 38(2):295–307CrossRef Dong C, Chen CL, He K (2014) Image super-resolution using deep convolutional networks. IEEE Trans Pattern Anal Mach Intell 38(2):295–307CrossRef
30.
go back to reference He K, Zhang X, Ren S, Sun J (2014) Spatial pyramid pooling in deep convolutional networks for visual recognition. In: European conference on computer vision He K, Zhang X, Ren S, Sun J (2014) Spatial pyramid pooling in deep convolutional networks for visual recognition. In: European conference on computer vision
31.
go back to reference Girshick R (2015) Fast R-CNN. In: IEEE international conference on computer vision Girshick R (2015) Fast R-CNN. In: IEEE international conference on computer vision
32.
go back to reference Girshick R, Donahue J, Darrell T, Malik J (2014) Rich feature hierarchies for accurate object detection and semantic segmentation. In: IEEE conference on computer vision and pattern recognition Girshick R, Donahue J, Darrell T, Malik J (2014) Rich feature hierarchies for accurate object detection and semantic segmentation. In: IEEE conference on computer vision and pattern recognition
33.
go back to reference Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: IEEE conference on computer vision and pattern recognition Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: IEEE conference on computer vision and pattern recognition
34.
go back to reference Sermanet P, Eigen D, Zhang X, Mathieu M, Fergus R, LeCun Y (2014) Overfeat: integrated recognition, localization and detection using convolutional networks. In: International conference on learning representations Sermanet P, Eigen D, Zhang X, Mathieu M, Fergus R, LeCun Y (2014) Overfeat: integrated recognition, localization and detection using convolutional networks. In: International conference on learning representations
35.
go back to reference Carreira J, Sminchisescu C (2012) CPMC: automatic object segmentation using constrained parametric min-cuts. IEEE Trans Pattern Anal Mach Intell 34:1312–1328CrossRef Carreira J, Sminchisescu C (2012) CPMC: automatic object segmentation using constrained parametric min-cuts. IEEE Trans Pattern Anal Mach Intell 34:1312–1328CrossRef
36.
go back to reference Arbeláez P, Pont-Tuset J, Barron JT, Marques F, Malik J (2014) Multiscale combinatorial grouping. In: IEEE conference on computer vision and pattern recognition Arbeláez P, Pont-Tuset J, Barron JT, Marques F, Malik J (2014) Multiscale combinatorial grouping. In: IEEE conference on computer vision and pattern recognition
37.
go back to reference Erhan D, Szegedy C, Toshev A, Anguelov D (2014) Scalable object detection using deep neural networks. In: IEEE conference on computer vision and pattern recognition Erhan D, Szegedy C, Toshev A, Anguelov D (2014) Scalable object detection using deep neural networks. In: IEEE conference on computer vision and pattern recognition
38.
go back to reference Dai J, He K, Sun J (2015) Convolutional feature masking for joint object and stuff segmentation. In: IEEE conference on computer vision and pattern recognition Dai J, He K, Sun J (2015) Convolutional feature masking for joint object and stuff segmentation. In: IEEE conference on computer vision and pattern recognition
39.
go back to reference Ren S, He K, Girshick R, Sun J (2017) Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell 39(6):1137–1149CrossRef Ren S, He K, Girshick R, Sun J (2017) Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell 39(6):1137–1149CrossRef
40.
go back to reference Pinheiro PO, Collobert R, Dollar P (2015) Learning to segment object candidates. In: Neural information processing systems, pp 1990–1998 Pinheiro PO, Collobert R, Dollar P (2015) Learning to segment object candidates. In: Neural information processing systems, pp 1990–1998
41.
go back to reference Sande KEV, Uijlings JR, Gevers T, Smeulders AW (2011) Segmentation as selective search for object recognition. In: IEEE international conference on computer vision, pp 1879–1886 Sande KEV, Uijlings JR, Gevers T, Smeulders AW (2011) Segmentation as selective search for object recognition. In: IEEE international conference on computer vision, pp 1879–1886
42.
go back to reference Zitnick CL, Dollar P (2014) Edge boxes: locating object proposals from edges. In: European conference on computer vision, pp 391–405 Zitnick CL, Dollar P (2014) Edge boxes: locating object proposals from edges. In: European conference on computer vision, pp 391–405
43.
go back to reference Welinder P, Branson S, Mita T (2010) Caltech-UCSD Birds 200. California Institute of Technology, Pasadena Welinder P, Branson S, Mita T (2010) Caltech-UCSD Birds 200. California Institute of Technology, Pasadena
44.
go back to reference He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: IEEE conference on computer vision and pattern recognition, pp 770–778 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: IEEE conference on computer vision and pattern recognition, pp 770–778
45.
go back to reference Szegedy C, Liu W, Jia Y, Sermanet P et al (2015) Going deeper with convolutions. In: IEEE conference on computer vision and pattern recognition, pp 1–9 Szegedy C, Liu W, Jia Y, Sermanet P et al (2015) Going deeper with convolutions. In: IEEE conference on computer vision and pattern recognition, pp 1–9
46.
go back to reference Song S, Xiao J (2016) Deep sliding shapes for a modal 3D object detection in RGB-D images. In: Computer vision and pattern recognition, pp 808–816 Song S, Xiao J (2016) Deep sliding shapes for a modal 3D object detection in RGB-D images. In: Computer vision and pattern recognition, pp 808–816
47.
48.
go back to reference Johnson J, Karpathy A, Fei-Fei L (2016) Densecap: fully convolutional localization networks for dense captioning. In: Computer vision and pattern recognition, pp 4565–4574 Johnson J, Karpathy A, Fei-Fei L (2016) Densecap: fully convolutional localization networks for dense captioning. In: Computer vision and pattern recognition, pp 4565–4574
49.
50.
go back to reference Ren S, He K, Girshick R, Zhang X, Sun J (2017) Object detection networks on convolutional feature maps. IEEE Trans Pattern Anal Mach Intell 39(7):1476–1481CrossRef Ren S, He K, Girshick R, Zhang X, Sun J (2017) Object detection networks on convolutional feature maps. IEEE Trans Pattern Anal Mach Intell 39(7):1476–1481CrossRef
51.
go back to reference Redmon J, Farhadi A (2017) YOLO9000: better, faster, stronger. In: IEEE conference on computer vision and pattern recognition, pp 6517–6525 Redmon J, Farhadi A (2017) YOLO9000: better, faster, stronger. In: IEEE conference on computer vision and pattern recognition, pp 6517–6525
52.
go back to reference Verstraeten W, Vermeulen B, Stuckens J et al (2010) Webcams for bird detection and monitoring: a demonstration study. Sensors 10:3480–3503CrossRef Verstraeten W, Vermeulen B, Stuckens J et al (2010) Webcams for bird detection and monitoring: a demonstration study. Sensors 10:3480–3503CrossRef
Metadata
Title
Enhanced Bird Detection from Low-Resolution Aerial Image Using Deep Neural Networks
Authors
Ce Li
Baochang Zhang
Hanwen Hu
Jing Dai
Publication date
18-06-2018
Publisher
Springer US
Published in
Neural Processing Letters / Issue 3/2019
Print ISSN: 1370-4621
Electronic ISSN: 1573-773X
DOI
https://doi.org/10.1007/s11063-018-9871-z

Other articles of this Issue 3/2019

Neural Processing Letters 3/2019 Go to the issue