Skip to main content
Top

27-08-2024

Enhanced Dynamic Key-Value Memory Networks for Personalized Student Modeling and Learning Ability Classification

Authors: Huanhuan Zhang, Lei Wang, Yuxian Qu, Wei Li, Qiaoyong Jiang

Published in: Cognitive Computation

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Knowledge tracing (KT) is a technique that can be applied to predict students’ current skill mastery levels and future academic performance based on previous question-answering data. A good KT model can more accurately reflect a student’s cognitive processes and provide a more realistic assessment of skill mastery level. Currently, most KT models regard all students as a whole, while ignoring their personal differences; a few KT models attempt to personalize the modeling of students from the perspective of their learning abilities, among which a typical example is Deep Knowledge Tracing with Dynamic Student Classification (DKT-DSC). However, these models have a relatively coarse-grained approach to modeling students’ learning abilities and cannot accurately capture the nonlinear relationship between students’ learning abilities and the questions they answer. To solve these problems, we propose a novel KT model named the Enhanced Dynamic Key-Value Memory Networks for Dynamic Student Classification (EnDKVMN-DSC). This model is specifically designed for personalized student modeling and learning ability classification. Specifically, first, we propose a novel Enhanced Dynamic Key-Value Memory Network (EnDKVMN) and use it to model each student’s learning ability. Second, students are classified according to their learning abilities based on the K-means algorithm. Finally, the enriched input features are constructed and passed through Gated Recurrent Unit (GRU) networks to obtain prediction results. All experiments are conducted on four real-world datasets to evaluate our proposed model, and the results show that EnDKVMN-DSC outperforms the other four state-of-the-art KT models based on DKT or DKVMN in predicting student performance.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
2.
go back to reference Corbett AT, Anderson JR. Knowledge tracing: modeling the acquisition of procedural knowledge. User Model User-Adap Inter. 1994;4(4):253–78.CrossRef Corbett AT, Anderson JR. Knowledge tracing: modeling the acquisition of procedural knowledge. User Model User-Adap Inter. 1994;4(4):253–78.CrossRef
3.
go back to reference Pavlik Jr PI, Cen H, Koedinger KR. Performance factors analysis - a new alternative to knowledge tracing. In: Proceedings of the 14th International Conference on Artificial Intelligence in Education (AIED). 2009. pp. 531–538. Pavlik Jr PI, Cen H, Koedinger KR. Performance factors analysis - a new alternative to knowledge tracing. In: Proceedings of the 14th International Conference on Artificial Intelligence in Education (AIED). 2009. pp. 531–538.
4.
go back to reference Vie JJ, Kashima H. Knowledge tracing machines: factorization machines for knowledge tracing. In: Thirty-Third AAAI Conference on Artifcial Intelligence. 2019. pp. 750–757. Vie JJ, Kashima H. Knowledge tracing machines: factorization machines for knowledge tracing. In: Thirty-Third AAAI Conference on Artifcial Intelligence. 2019. pp. 750–757.
5.
go back to reference Piech C, Spencer J, Huang J, Ganguli S, Sahami M, Guibas L, et al. Deep knowledge tracing. In: Proceedings of the 28th International Conference on Neural Information Processing Systems (NIPS). 2015. pp. 505–513. Piech C, Spencer J, Huang J, Ganguli S, Sahami M, Guibas L, et al. Deep knowledge tracing. In: Proceedings of the 28th International Conference on Neural Information Processing Systems (NIPS). 2015. pp. 505–513.
6.
go back to reference Zhang J, Shi X, King I, Yeung D. Dynamic key-value memory networks for knowledge tracing. In: Proceedings of the 26th International Conference on World Wide Web (WWW). 2017. pp. 765–774. Zhang J, Shi X, King I, Yeung D. Dynamic key-value memory networks for knowledge tracing. In: Proceedings of the 26th International Conference on World Wide Web (WWW). 2017. pp. 765–774.
7.
go back to reference Yeung C. Deep-IRT: make deep learning based knowledge tracing explainable using item response theory. ArXiv preprint. 2019. arXiv:1904.11738. Yeung C. Deep-IRT: make deep learning based knowledge tracing explainable using item response theory. ArXiv preprint. 2019. arXiv:1904.11738.
8.
go back to reference Liu Q, Huang Z, Yin Y, Chen E, Xiong H, Su Y, et al. EKT: exercise-aware knowledge tracing for student performance prediction. IEEE Trans Knowl Data Eng. 2021;33(1):100–15.CrossRef Liu Q, Huang Z, Yin Y, Chen E, Xiong H, Su Y, et al. EKT: exercise-aware knowledge tracing for student performance prediction. IEEE Trans Knowl Data Eng. 2021;33(1):100–15.CrossRef
9.
go back to reference Minn S, Yu Y, Desmarais MC, Zhu F, Vie J. Deep knowledge tracing and dynamic student classification for knowledge tracing. In: 2018 IEEE International Conference on Data Mining (ICDM). 2018. pp. 1182–1187. Minn S, Yu Y, Desmarais MC, Zhu F, Vie J. Deep knowledge tracing and dynamic student classification for knowledge tracing. In: 2018 IEEE International Conference on Data Mining (ICDM). 2018. pp. 1182–1187.
10.
go back to reference Liu Y, Yang Y, Chen X, Shen J, Zhang H, Yu Y. Improving knowledge tracing via pre-training question embeddings. In: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI). 2020. pp. 1577–1583. Liu Y, Yang Y, Chen X, Shen J, Zhang H, Yu Y. Improving knowledge tracing via pre-training question embeddings. In: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI). 2020. pp. 1577–1583.
11.
go back to reference Yan H, Cheung LP. Implicit heterogeneous features embedding in deep knowledge tracing. Cogn Comput. 2018;10(1):3–14.CrossRef Yan H, Cheung LP. Implicit heterogeneous features embedding in deep knowledge tracing. Cogn Comput. 2018;10(1):3–14.CrossRef
12.
go back to reference Gan W, Sun Y, Peng X, Sun Y. Modeling learner’s dynamic knowledge construction procedure and cognitive item difficulty for knowledge tracing. Appl Intell. 2020;50(11):3894–912.CrossRef Gan W, Sun Y, Peng X, Sun Y. Modeling learner’s dynamic knowledge construction procedure and cognitive item difficulty for knowledge tracing. Appl Intell. 2020;50(11):3894–912.CrossRef
13.
go back to reference Song X, Li J, Lei Q, Zhao W, Chen Y, Mian A. Bi-CLKT: bi-graph contrastive learning based knowledge tracing. Knowl-Based Syst. 2022;241(4):108274.CrossRef Song X, Li J, Lei Q, Zhao W, Chen Y, Mian A. Bi-CLKT: bi-graph contrastive learning based knowledge tracing. Knowl-Based Syst. 2022;241(4):108274.CrossRef
14.
go back to reference Shen S, Liu Q, Chen E, Wu H, Huang Z, Zhao W, et al. Convolutional knowledge tracing: modeling individualization in student learning process. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. 2020. pp. 1857–1860. Shen S, Liu Q, Chen E, Wu H, Huang Z, Zhao W, et al. Convolutional knowledge tracing: modeling individualization in student learning process. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. 2020. pp. 1857–1860.
15.
go back to reference Wang C, Sahebi S. Continuous personalized knowledge tracing: modeling long-term learning in online environments. In: Proceedings of the 32nd ACM International Conferenceon Information and Knowledge Management (CIKM). 2023. pp. 2616–2625. Wang C, Sahebi S. Continuous personalized knowledge tracing: modeling long-term learning in online environments. In: Proceedings of the 32nd ACM International Conferenceon Information and Knowledge Management (CIKM). 2023. pp. 2616–2625.
16.
go back to reference Minn S, Desmarais MC, Zhu F, Xiao J, Wang J. Dynamic student classification on memory networks for knowledge tracing. In: Advances in Knowledge Discovery and Data Mining: 23rd Pacific-Asia Conference. 2019. pp. 163–174. Minn S, Desmarais MC, Zhu F, Xiao J, Wang J. Dynamic student classification on memory networks for knowledge tracing. In: Advances in Knowledge Discovery and Data Mining: 23rd Pacific-Asia Conference. 2019. pp. 163–174.
17.
go back to reference Pu S, Converse G, Huang Y. Deep performance factors analysis for knowledge tracing. International Conference on Artificial Intelligence in Education (AIED). 2021. pp. 331–341. Pu S, Converse G, Huang Y. Deep performance factors analysis for knowledge tracing. International Conference on Artificial Intelligence in Education (AIED). 2021. pp. 331–341.
18.
go back to reference Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997;9(8):1735–80.CrossRef Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997;9(8):1735–80.CrossRef
19.
go back to reference Lu Y, Chen P, Pian Y, Zheng VW. CMKT: Concept map driven knowledge tracing. IEEE Trans Learn Technol. 2022;15(4):467–80.CrossRef Lu Y, Chen P, Pian Y, Zheng VW. CMKT: Concept map driven knowledge tracing. IEEE Trans Learn Technol. 2022;15(4):467–80.CrossRef
20.
go back to reference LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44.CrossRef LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44.CrossRef
21.
go back to reference Graves A, Wayne G, Reynolds M, Harley T, Danihelka I, Grabska-Barwinska A, et al. Hybrid computing using a neural network with dynamic external memory. Nature. 2016;538(7626):471–6.CrossRef Graves A, Wayne G, Reynolds M, Harley T, Danihelka I, Grabska-Barwinska A, et al. Hybrid computing using a neural network with dynamic external memory. Nature. 2016;538(7626):471–6.CrossRef
22.
go back to reference Santoro A, Bartunov S, Botvinick M, Wierstra D, Lillicrap T. Meta-learning with memory-augmented neural networks. In: Proceedings of the 33rd International Conference on Machine Learning(ICML). 2016. pp. 1842–1850. Santoro A, Bartunov S, Botvinick M, Wierstra D, Lillicrap T. Meta-learning with memory-augmented neural networks. In: Proceedings of the 33rd International Conference on Machine Learning(ICML). 2016. pp. 1842–1850.
23.
go back to reference Abdelrahman G, Wang Qing. Deep graph memory networks for forgetting-robust knowledge tracing. IEEE Trans Knowl Data Eng. 2023;35(8):7844–7855. Abdelrahman G, Wang Qing. Deep graph memory networks for forgetting-robust knowledge tracing. IEEE Trans Knowl Data Eng. 2023;35(8):7844–7855.
24.
go back to reference Miller A, Fisch A, Dodge J, Karimi A-H, Bordes A, Weston J. Key-value memory networks for directly reading documents. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing (EMNLP). 2016. pp. 1400–1409. Miller A, Fisch A, Dodge J, Karimi A-H, Bordes A, Weston J. Key-value memory networks for directly reading documents. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing (EMNLP). 2016. pp. 1400–1409.
25.
26.
go back to reference Abdelrahman G, Wang Q, Nunes B. Knowledge tracing: a survey. ACM Comput Surv. 2023;55(11):1–37.CrossRef Abdelrahman G, Wang Q, Nunes B. Knowledge tracing: a survey. ACM Comput Surv. 2023;55(11):1–37.CrossRef
28.
go back to reference Roy S, Madhyastha M, Lawrence S, Rajan V. Inferring concept prerequisite relations from online educational resources. In: Proceedings of the thirty-third AAAI conference on artificial intelligence and thirty-first innovative applications of artificial intelligence conference and ninth AAAI symposium on educational advances in artificial intelligence. 2019. pp. 9589–9594. https://doi.org/10.1609/aaai.v33i01.33019589. Roy S, Madhyastha M, Lawrence S, Rajan V. Inferring concept prerequisite relations from online educational resources. In: Proceedings of the thirty-third AAAI conference on artificial intelligence and thirty-first innovative applications of artificial intelligence conference and ninth AAAI symposium on educational advances in artificial intelligence. 2019. pp. 9589–9594. https://​doi.​org/​10.​1609/​aaai.​v33i01.​33019589.
29.
go back to reference Wang S, Ororbia AG, Wu Z, Williams K, Liang C, Pursel B, et al. Using prerequisites to extract concept maps from textbooks. In: Proceedings of the 25th ACM International on Conference on Information and Knowledge Management (CIKM). 2016. pp. 317–326. Wang S, Ororbia AG, Wu Z, Williams K, Liang C, Pursel B, et al. Using prerequisites to extract concept maps from textbooks. In: Proceedings of the 25th ACM International on Conference on Information and Knowledge Management (CIKM). 2016. pp. 317–326.
30.
go back to reference Wang C, Zhao S, Sahebi S. Learning from non-assessed resources: deep multi-type knowledge tracing. In: Proceedings of the 14th International Conference on Educational Data Mining. 2021. pp. 195–205. Wang C, Zhao S, Sahebi S. Learning from non-assessed resources: deep multi-type knowledge tracing. In: Proceedings of the 14th International Conference on Educational Data Mining. 2021. pp. 195–205.
31.
go back to reference Ha H, Hwang U, Hong Y, Jang J, Yoon S. Memory-augmented neural networks for knowledge tracing from the perspective of learning and forgetting. ArXiv preprint. 2019. arXiv: 1805.10768. Ha H, Hwang U, Hong Y, Jang J, Yoon S. Memory-augmented neural networks for knowledge tracing from the perspective of learning and forgetting. ArXiv preprint. 2019. arXiv: 1805.10768.
32.
go back to reference Sun X, Zhao X, Li B, Ma Y, Sutcliffe R, Feng J. Dynamic key-value memory networks with rich features for knowledge tracing. IEEE Transactions on Cybernetics. 2021;52(8):8239–45.CrossRef Sun X, Zhao X, Li B, Ma Y, Sutcliffe R, Feng J. Dynamic key-value memory networks with rich features for knowledge tracing. IEEE Transactions on Cybernetics. 2021;52(8):8239–45.CrossRef
33.
go back to reference Wang W, Ma H, Zhao Y, Yang F, Chang L. SEEP: semantic-enhanced question embeddings pre-training for improving knowledge tracing. Inf Sci. 2022;614(4):153–69. Wang W, Ma H, Zhao Y, Yang F, Chang L. SEEP: semantic-enhanced question embeddings pre-training for improving knowledge tracing. Inf Sci. 2022;614(4):153–69.
34.
go back to reference Qin X, Li Zhijun , Gao Yang, Xue T. Knowledge tracing with learning memory and sequence dependence. In: 2021 IEEE International Conference on Engineering, Technology & Education (TALE). 2021. pp. 01–06. Qin X, Li Zhijun , Gao Yang, Xue T. Knowledge tracing with learning memory and sequence dependence. In: 2021 IEEE International Conference on Engineering, Technology & Education (TALE). 2021. pp. 01–06.
35.
go back to reference Ying X. An overview of overfitting and its solutions. J Phys Conf Ser. 2019;1168(2):022022–. Ying X. An overview of overfitting and its solutions. J Phys Conf Ser. 2019;1168(2):022022–.
38.
go back to reference Chen Y, Yi Z. Adaptive sparse dropout: learning the certainty and uncertainty in deep neural networks. Neurocomputing. 2021;450:354–61.CrossRef Chen Y, Yi Z. Adaptive sparse dropout: learning the certainty and uncertainty in deep neural networks. Neurocomputing. 2021;450:354–61.CrossRef
39.
go back to reference Reyad M, Sarhan AM, Arafa M. A modified Adam algorithm for deep neural network optimization. Neural Comput Appl. 2023;35(23):17095–17112. Reyad M, Sarhan AM, Arafa M. A modified Adam algorithm for deep neural network optimization. Neural Comput Appl. 2023;35(23):17095–17112.
40.
go back to reference Qin C, Liangming Chen, Zangtai Cai, Mei Liu, Jin L. Long short-term memory with activation on gradient. Neural Networks. 2023;164:135–45.CrossRef Qin C, Liangming Chen, Zangtai Cai, Mei Liu, Jin L. Long short-term memory with activation on gradient. Neural Networks. 2023;164:135–45.CrossRef
41.
go back to reference Lever J, Krzywinski M, Altman N. Points of significance: model selection and overfitting. Nat Methods. 2016;13(9):703–5.CrossRef Lever J, Krzywinski M, Altman N. Points of significance: model selection and overfitting. Nat Methods. 2016;13(9):703–5.CrossRef
42.
go back to reference Gervet T, Koedinger K, Schneider J, Mitchell T. When is deep learning the best approach to knowledge tracing? Journal of Educational Data Mining. 2020;12(3):31–54. Gervet T, Koedinger K, Schneider J, Mitchell T. When is deep learning the best approach to knowledge tracing? Journal of Educational Data Mining. 2020;12(3):31–54.
43.
go back to reference Liu C, Li X. Multi-factor memory attentive model for knowledge tracing. Asian Conference on Machine Learning (ACML). 2021. pp. 856–869. Liu C, Li X. Multi-factor memory attentive model for knowledge tracing. Asian Conference on Machine Learning (ACML). 2021. pp. 856–869.
Metadata
Title
Enhanced Dynamic Key-Value Memory Networks for Personalized Student Modeling and Learning Ability Classification
Authors
Huanhuan Zhang
Lei Wang
Yuxian Qu
Wei Li
Qiaoyong Jiang
Publication date
27-08-2024
Publisher
Springer US
Published in
Cognitive Computation
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-024-10341-w

Premium Partner