Skip to main content
Top

2024 | OriginalPaper | Chapter

Enhanced Prediction of Breast Cancer Using Machine Learning Ensemble Models and Techniques

Authors : E. Chandralekha, S Ravikumar, K Antony Kumar, M. J. Carmel Mary Belinda

Published in: Proceedings of Third International Conference on Computing and Communication Networks

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Breast cancer was acknowledged as one of the world’s most formidable diseases. The key to improving patient outcomes and general wellbeing had been to make an accurate and timely diagnosis. This research used Machine Learning methods to investigate several ensemble approaches to breast cancer diagnosis prediction. This research made extensive use of the Breast Cancer Wisconsin dataset. The research aimed to provide a comprehensive evaluation of the predictive powers of a variety of five ensemble models, including Random Forest, Gradient Boosting, AdaBoost, Bagging, and Extra Trees. The approach included several criteria for assessment, including accuracy, precision, recall, and F1-score. Further analysis was done with the use of the ROC curve, the precision-recall curve, and other statistical tools. It’s important to note that among all the models tested, AdaBoost performed the best.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Roy, S., Jeyabalan, J., Gochhait, S., Sugumaran, P., Gromiha, M.M.: Metadata analysis to get insight into drug resistant ovarian cancer. Ingénierie des Systèmes d’Information 28(2) (2023) Roy, S., Jeyabalan, J., Gochhait, S., Sugumaran, P., Gromiha, M.M.: Metadata analysis to get insight into drug resistant ovarian cancer. Ingénierie des Systèmes d’Information 28(2) (2023)
2.
go back to reference Geller, J.: Data mining: practical machine learning tools and techniques with Java implementations. SIGMOD Record 31(1), 77 (2002) Geller, J.: Data mining: practical machine learning tools and techniques with Java implementations. SIGMOD Record 31(1), 77 (2002)
3.
go back to reference Islam, M.M., Haque, M.R., Iqbal, H., Hasan, M.M., Hasan, M., Kabir, M.N.: Breast cancer prediction: a comparative study using machine learning techniques. SN Comput. Sci. 1, 1–14 (2020)CrossRef Islam, M.M., Haque, M.R., Iqbal, H., Hasan, M.M., Hasan, M., Kabir, M.N.: Breast cancer prediction: a comparative study using machine learning techniques. SN Comput. Sci. 1, 1–14 (2020)CrossRef
4.
go back to reference Assegie, T.A.: An optimized K-Nearest Neighbor based breast cancer detection. J. Robot. Control (JRC) 2(3), 115–118 (2021) Assegie, T.A.: An optimized K-Nearest Neighbor based breast cancer detection. J. Robot. Control (JRC) 2(3), 115–118 (2021)
5.
go back to reference Mangukiya, M., Vaghani, A., Savani, M.: Breast cancer detection with machine learning. Int. J. Res. Appl. Sci. Eng. Technol. 10(2), 141–145 (2022)CrossRef Mangukiya, M., Vaghani, A., Savani, M.: Breast cancer detection with machine learning. Int. J. Res. Appl. Sci. Eng. Technol. 10(2), 141–145 (2022)CrossRef
6.
go back to reference Ortega, J.H.J.C., Resureccion, M.R., Natividad, L.R.Q., Bantug, E.T., Lagman, A.C., Lopez, S.R.: An analysis of classification of breast cancer dataset using J48 algorithm. Int. J. Adv. Trends Comput. Sci. Eng. 9 (2020) Ortega, J.H.J.C., Resureccion, M.R., Natividad, L.R.Q., Bantug, E.T., Lagman, A.C., Lopez, S.R.: An analysis of classification of breast cancer dataset using J48 algorithm. Int. J. Adv. Trends Comput. Sci. Eng. 9 (2020)
7.
go back to reference Dubey, A.K., Gupta, U., Jain, S.: Analysis of k-means clustering approach on the breast cancer Wisconsin dataset. Int. J. Comput. Assist. Radiol. Surg. 11, 2033–2047 (2016)CrossRef Dubey, A.K., Gupta, U., Jain, S.: Analysis of k-means clustering approach on the breast cancer Wisconsin dataset. Int. J. Comput. Assist. Radiol. Surg. 11, 2033–2047 (2016)CrossRef
8.
go back to reference Fatima, N., Liu, L., Hong, S., Ahmed, H.: Prediction of breast cancer, comparative review of machine learning techniques, and their analysis. IEEE Access 8, 150360–150376 (2020)CrossRef Fatima, N., Liu, L., Hong, S., Ahmed, H.: Prediction of breast cancer, comparative review of machine learning techniques, and their analysis. IEEE Access 8, 150360–150376 (2020)CrossRef
9.
go back to reference Manikandan, J., Devakadacham, S.R., Shanthalakshmi, M., Raj, Y.A., Vijay, K.: An efficient technique for the better recognition of oral cancer using support vector machine. In: 2023 7th International Conference on Intelligent Computing and Control Systems (ICICCS), pp. 1252–1257 (2023) Manikandan, J., Devakadacham, S.R., Shanthalakshmi, M., Raj, Y.A., Vijay, K.: An efficient technique for the better recognition of oral cancer using support vector machine. In: 2023 7th International Conference on Intelligent Computing and Control Systems (ICICCS), pp. 1252–1257 (2023)
10.
go back to reference Naji, M.A., El Filali, S., Aarika, K., Benlahmar, E.H., Abdelouhahid, R.A., Debauche, O.: Machine learning algorithms for breast cancer prediction and diagnosis. Procedia Comput. Sci. 191, 487–492 (2021)CrossRef Naji, M.A., El Filali, S., Aarika, K., Benlahmar, E.H., Abdelouhahid, R.A., Debauche, O.: Machine learning algorithms for breast cancer prediction and diagnosis. Procedia Comput. Sci. 191, 487–492 (2021)CrossRef
11.
go back to reference Bhise, S., Gadekar, S., Gaur, A.S., Bepari, S., Deepmala Kale, D.S.A.: Breast cancer detection using machine learning techniques. Int. J. Eng. Res. Technol. 10(7), 2278–0181 (2021) Bhise, S., Gadekar, S., Gaur, A.S., Bepari, S., Deepmala Kale, D.S.A.: Breast cancer detection using machine learning techniques. Int. J. Eng. Res. Technol. 10(7), 2278–0181 (2021)
12.
go back to reference Wang, Y., Wang, N., Xu, M., Yu, J., Qin, C., Luo, X., Ni, D.: Deeply-supervised networks with threshold loss for cancer detection in automated breast ultrasound. IEEE Trans. Med. Imaging 39(4), 866–876 (2019)CrossRef Wang, Y., Wang, N., Xu, M., Yu, J., Qin, C., Luo, X., Ni, D.: Deeply-supervised networks with threshold loss for cancer detection in automated breast ultrasound. IEEE Trans. Med. Imaging 39(4), 866–876 (2019)CrossRef
13.
go back to reference Naseem, U., Rashid, J., Ali, L., Kim, J., Haq, Q.E.U., Awan, M.J., Imran, M.: An automatic detection of breast cancer diagnosis and prognosis based on machine learning using ensemble of classifiers. IEEE Access 10, 78242–78252 (2022)CrossRef Naseem, U., Rashid, J., Ali, L., Kim, J., Haq, Q.E.U., Awan, M.J., Imran, M.: An automatic detection of breast cancer diagnosis and prognosis based on machine learning using ensemble of classifiers. IEEE Access 10, 78242–78252 (2022)CrossRef
14.
go back to reference Mohammad, W.T., Teete, R., Al-Aaraj, H., Rubbai, Y.S.Y., Arabyat, M.M.: Diagnosis of breast cancer pathology on the Wisconsin dataset with the help of data mining classification and clustering techniques. Appl. Bionics Biomech. (2022) Mohammad, W.T., Teete, R., Al-Aaraj, H., Rubbai, Y.S.Y., Arabyat, M.M.: Diagnosis of breast cancer pathology on the Wisconsin dataset with the help of data mining classification and clustering techniques. Appl. Bionics Biomech. (2022)
15.
go back to reference Zheng, J., Lin, D., Gao, Z., Wang, S., He, M., Fan, J.: Deep learning assisted efficient AdaBoost algorithm for breast cancer detection and early diagnosis. IEEE Access 8, 96946–96954 (2020)CrossRef Zheng, J., Lin, D., Gao, Z., Wang, S., He, M., Fan, J.: Deep learning assisted efficient AdaBoost algorithm for breast cancer detection and early diagnosis. IEEE Access 8, 96946–96954 (2020)CrossRef
16.
go back to reference Haq, A.U., Li, J.P., Saboor, A., Khan, J., Wali, S., Ahmad, S., Ali, A., Khan, G.A., Zhou, W.: Detection of breast cancer through clinical data using supervised and unsupervised feature selection techniques. IEEE Access 9, 22090–22105 (2021)CrossRef Haq, A.U., Li, J.P., Saboor, A., Khan, J., Wali, S., Ahmad, S., Ali, A., Khan, G.A., Zhou, W.: Detection of breast cancer through clinical data using supervised and unsupervised feature selection techniques. IEEE Access 9, 22090–22105 (2021)CrossRef
Metadata
Title
Enhanced Prediction of Breast Cancer Using Machine Learning Ensemble Models and Techniques
Authors
E. Chandralekha
S Ravikumar
K Antony Kumar
M. J. Carmel Mary Belinda
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-0892-5_58