Skip to main content
Top
Published in: Journal of Materials Science 17/2018

04-06-2018 | Chemical routes to materials

Enhanced water resistance and energy performance of core–shell aluminum nanoparticles via in situ grafting of energetic glycidyl azide polymer

Authors: Chengcheng Zeng, Jun Wang, Guansong He, Chuan Huang, Zhijian Yang, Shijun Liu, Feiyan Gong

Published in: Journal of Materials Science | Issue 17/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The application of aluminum nanoparticle is limited due to its passivation Al2O3 layer even though it owns extreme specific surface and high reaction activity. In this work, the aluminum nanoparticles were modified via in situ grafting onto energetic glycidyl azide polymer (GAP) to improve the stability and energy-releasing performance. The results showed that GAP was grafted on the nano-aluminum surface with chemical bonds of –O–(CO–NH)– formed, and the thickness of shell layer of GAP could be tuned by changing the relative ratio of reactants. Furthermore, modified nanoparticles show hydrophobicity with static water contact angle changing from 20.2° to 142.4°. Significant increasing stability of aluminum nanoparticles is obtained in hot water, which is evidenced by that around 10 wt% of modified aluminum is reacted after 210 min. Based on the core–shell configurations, (Al@GAP)/fluorine composites were prepared. The violent combustion phenomenon and high release rate profiles revealed high energy-releasing performance with the assistance of GAP. This synthetic strategy may provide an effective approach to prepare other metal nanoparticles, and possess potential application value in the fields of metallized explosives and high-energy structure with energy release.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Arkhipov VA, Korotkikh AG (2012) The influence of aluminum powder dispersity on composite solid propellants ignitability by laser radiation. J Combust Flame 159:409–415CrossRef Arkhipov VA, Korotkikh AG (2012) The influence of aluminum powder dispersity on composite solid propellants ignitability by laser radiation. J Combust Flame 159:409–415CrossRef
2.
go back to reference Wen A, Liu PJ, Yang WJ (2016) Agglomerates, smoke oxide particles, and carbon inclusions in condensed combustion products of an aluminized GAP-based propellant. Acta Astronaut 129:147–153CrossRef Wen A, Liu PJ, Yang WJ (2016) Agglomerates, smoke oxide particles, and carbon inclusions in condensed combustion products of an aluminized GAP-based propellant. Acta Astronaut 129:147–153CrossRef
3.
go back to reference Patel VK, Ganguli A, Kant R, Bhattacharya S (2015) Micropatterning of nanoenergetic films of Bi2O3/Al for pyrotechnics. RSC Adv 5:14967–14973CrossRef Patel VK, Ganguli A, Kant R, Bhattacharya S (2015) Micropatterning of nanoenergetic films of Bi2O3/Al for pyrotechnics. RSC Adv 5:14967–14973CrossRef
4.
go back to reference Su Y, Meguid SA (2016) Multiphysics modeling and characterization of explosively loaded aluminum blocks. Acta Mech 227:707–720CrossRef Su Y, Meguid SA (2016) Multiphysics modeling and characterization of explosively loaded aluminum blocks. Acta Mech 227:707–720CrossRef
5.
go back to reference Manner VW, Pemberton SJ, Gunderson JA, Herrera TJ, Lloyd JM, Salazar PJ, Rae P, Tappan BC (2012) The role of aluminum in the detonation and post-detonation expansion of selected cast HMX-based explosives. Propellants Explos Pyrotech 337:198–206CrossRef Manner VW, Pemberton SJ, Gunderson JA, Herrera TJ, Lloyd JM, Salazar PJ, Rae P, Tappan BC (2012) The role of aluminum in the detonation and post-detonation expansion of selected cast HMX-based explosives. Propellants Explos Pyrotech 337:198–206CrossRef
6.
go back to reference Broussean P (2002) Nanometric Al in explosive. Propellants Explos Pyrotech 27:300–306CrossRef Broussean P (2002) Nanometric Al in explosive. Propellants Explos Pyrotech 27:300–306CrossRef
7.
go back to reference Tyagi H, Phelan PE, Prasher R, Peck R, Lee T, Pacheco JR, Arentzen P (2008) Increased hot-plate ignition probability for nanoparticle-laden diesel fuel. Nano Lett 5:1410–1416CrossRef Tyagi H, Phelan PE, Prasher R, Peck R, Lee T, Pacheco JR, Arentzen P (2008) Increased hot-plate ignition probability for nanoparticle-laden diesel fuel. Nano Lett 5:1410–1416CrossRef
8.
go back to reference DeLuca LT, Galfetti L, Severini F, Meda L, Marra G, Vorozhtsov AB, Sedoi VS, Babuk VA (2005) Burning of nano-aluminized composite rocket propellants. Combust Explos Shock 6:680–692CrossRef DeLuca LT, Galfetti L, Severini F, Meda L, Marra G, Vorozhtsov AB, Sedoi VS, Babuk VA (2005) Burning of nano-aluminized composite rocket propellants. Combust Explos Shock 6:680–692CrossRef
9.
go back to reference Pantoya ML, Grantier JJ (2005) Combustion behavior of highly energetic thermites: nano versus micron composites. Propellants Explos Pyrotech 1:53–62CrossRef Pantoya ML, Grantier JJ (2005) Combustion behavior of highly energetic thermites: nano versus micron composites. Propellants Explos Pyrotech 1:53–62CrossRef
10.
go back to reference Valliappan S, Swiatkiewicz J, Puszynski JA (2005) Reactivity of aluminum nanopowders with metal oxides. Powder Technol 156:164–169CrossRef Valliappan S, Swiatkiewicz J, Puszynski JA (2005) Reactivity of aluminum nanopowders with metal oxides. Powder Technol 156:164–169CrossRef
11.
go back to reference Yang Y, Wang PP, Zhang ZC, Liu HL, Zhang J, Zhuang J, Wang X (2013) Nanowire membrane-based nanothermite: towards processable and tunable interfacial diffusion for solid state reactions. Sci Rep 3:1694CrossRef Yang Y, Wang PP, Zhang ZC, Liu HL, Zhang J, Zhuang J, Wang X (2013) Nanowire membrane-based nanothermite: towards processable and tunable interfacial diffusion for solid state reactions. Sci Rep 3:1694CrossRef
12.
go back to reference Dong ZZ, Al-Sharab JF, Kear BH, Tse SD (2013) Combined flame and electrode position synthesis of energetic coaxial tungsten-oxide/aluminum nanowire arrays. Nano Lett 13:4346–4350CrossRef Dong ZZ, Al-Sharab JF, Kear BH, Tse SD (2013) Combined flame and electrode position synthesis of energetic coaxial tungsten-oxide/aluminum nanowire arrays. Nano Lett 13:4346–4350CrossRef
13.
go back to reference Chung SW, Guliants EA, Bunker CE, Hammerstroem DW, Deng Y, Burgers MA, Jelliss PA, Buckner SW (2009) Capping and passivation of aluminum nanoparticles using alkyl-substituted epoxides. Langmuir 25:8883–8887CrossRef Chung SW, Guliants EA, Bunker CE, Hammerstroem DW, Deng Y, Burgers MA, Jelliss PA, Buckner SW (2009) Capping and passivation of aluminum nanoparticles using alkyl-substituted epoxides. Langmuir 25:8883–8887CrossRef
14.
go back to reference Hammerstroem DW, Burgers MA, Chung SW, Gulians EA, Bunker CE, Wentz KM, Hayes SE, Buckner SW, Jelliss PA (2011) Aluminum nanoparticles capped by polymerization of alkyl-substituted epoxides: ratio-dependent stability and particle Size. Inorg Chem 50:5054–5059CrossRef Hammerstroem DW, Burgers MA, Chung SW, Gulians EA, Bunker CE, Wentz KM, Hayes SE, Buckner SW, Jelliss PA (2011) Aluminum nanoparticles capped by polymerization of alkyl-substituted epoxides: ratio-dependent stability and particle Size. Inorg Chem 50:5054–5059CrossRef
15.
go back to reference He GS, Yang ZJ, Zhou XY, Zhang JL, Pan LP, Liu SJ (2016) Polymer bonded explosives (PBXs) with reduced thermal stress and sensitivity by thermal conductivity enhancement with grapheme nanoplatelets. Compos Sci Technol 131:22–31CrossRef He GS, Yang ZJ, Zhou XY, Zhang JL, Pan LP, Liu SJ (2016) Polymer bonded explosives (PBXs) with reduced thermal stress and sensitivity by thermal conductivity enhancement with grapheme nanoplatelets. Compos Sci Technol 131:22–31CrossRef
16.
go back to reference Yetter RA, Risha GA, Son SF (2009) Metal particle combustion and nanotechnology. Proc Combust Inst 32:1819–1838CrossRef Yetter RA, Risha GA, Son SF (2009) Metal particle combustion and nanotechnology. Proc Combust Inst 32:1819–1838CrossRef
17.
go back to reference Rubio MA, Gunduz IE, Groven LJ, Sippel TR, Han CW, Unocic RR, Ortalan V, Son SF (2017) Microexplosions and ignition dynamics in engineered aluminum/polymer fuel particles. J Combust Flame 176:162–171CrossRef Rubio MA, Gunduz IE, Groven LJ, Sippel TR, Han CW, Unocic RR, Ortalan V, Son SF (2017) Microexplosions and ignition dynamics in engineered aluminum/polymer fuel particles. J Combust Flame 176:162–171CrossRef
18.
go back to reference Andrzejak TA, Shafirovich E, Varma A (2007) Ignition mechanism of nickel-coated aluminum particles. J Combust Flame 150:60–70CrossRef Andrzejak TA, Shafirovich E, Varma A (2007) Ignition mechanism of nickel-coated aluminum particles. J Combust Flame 150:60–70CrossRef
19.
go back to reference Hahma A (2010) Method of improving the burn rate and ignitability of aluminum fuel particles and aluminum fuel so modified. US 7,785,430, B2, 31 Aug 2010 Hahma A (2010) Method of improving the burn rate and ignitability of aluminum fuel particles and aluminum fuel so modified. US 7,785,430, B2, 31 Aug 2010
20.
go back to reference Jouet RJ, Warren AD, Rosenberg DM, Bellitto VJ, Park K, Zachariah MR (2005) Surface passivation of bare aluminum nanoparticles using perfluoroalkyl carboxylic acids. Chem Mater 17:2987–2996CrossRef Jouet RJ, Warren AD, Rosenberg DM, Bellitto VJ, Park K, Zachariah MR (2005) Surface passivation of bare aluminum nanoparticles using perfluoroalkyl carboxylic acids. Chem Mater 17:2987–2996CrossRef
21.
go back to reference Kwon YS, Alexander AG, Julia IS (2007) Passivation of the surface of aluminum nanopowders by protective coatings of the different chemical origin. Appl Surf Sci 253:5558–5564CrossRef Kwon YS, Alexander AG, Julia IS (2007) Passivation of the surface of aluminum nanopowders by protective coatings of the different chemical origin. Appl Surf Sci 253:5558–5564CrossRef
22.
go back to reference Mohseni M, Mirabedini M, Hashemi M, Thompson GE (2006) Adhesion performance of an epoxy clear coat on aluminum alloy in the presence of vinyl and amino-sliane primers. Prog Org Coat 57:307–313CrossRef Mohseni M, Mirabedini M, Hashemi M, Thompson GE (2006) Adhesion performance of an epoxy clear coat on aluminum alloy in the presence of vinyl and amino-sliane primers. Prog Org Coat 57:307–313CrossRef
23.
go back to reference Attavar S, Diwekar M, Linford MR, Davis MA, Blair S (2010) Passivation of aluminum with alkyl phosphonic acids for biochip applications. Appl Surf Sci 256:7146–7150CrossRef Attavar S, Diwekar M, Linford MR, Davis MA, Blair S (2010) Passivation of aluminum with alkyl phosphonic acids for biochip applications. Appl Surf Sci 256:7146–7150CrossRef
24.
go back to reference Pauly CS, Genix AC, Alauzun JG, Sztucki M, Oberdisse J, Mutin PH (2015) Surface modification of alumina-coated silica nanoparticles in aqueous sols with phosphonic acids and impact on nanoparticle interactions. Phys Chem Chem Phys 17:19173–19182CrossRef Pauly CS, Genix AC, Alauzun JG, Sztucki M, Oberdisse J, Mutin PH (2015) Surface modification of alumina-coated silica nanoparticles in aqueous sols with phosphonic acids and impact on nanoparticle interactions. Phys Chem Chem Phys 17:19173–19182CrossRef
25.
go back to reference Atmane YA, Sicard L, Lamouri A, Pinson J, Sicard M, Masson C, Nowak S, Decorse P, Piquemal JY, Galtayries A, Mangeney C (2013) Functionalization of aluminum nanoparticles using a combination of aryl Diazonium salt chemistry and iniferter method. J Phys Chem C 117:26000–26006CrossRef Atmane YA, Sicard L, Lamouri A, Pinson J, Sicard M, Masson C, Nowak S, Decorse P, Piquemal JY, Galtayries A, Mangeney C (2013) Functionalization of aluminum nanoparticles using a combination of aryl Diazonium salt chemistry and iniferter method. J Phys Chem C 117:26000–26006CrossRef
26.
go back to reference Gong FY, Liu XB, Wang L, Liu JH (2014) Surface grafting with energetic glycidyl azide polymer(GAP): an efficient way to process ultrafine aluminum powders. In: New trends in research and energetic materials, Czech Republic Gong FY, Liu XB, Wang L, Liu JH (2014) Surface grafting with energetic glycidyl azide polymer(GAP): an efficient way to process ultrafine aluminum powders. In: New trends in research and energetic materials, Czech Republic
27.
go back to reference Liu XB, Pan LP, Zhang JH, Gong FY (2015) Properties of ultrafine aluminum powders modified by facile grafting with glycidyl azide polymer. Chin J Energ Mater 23:813–816 Liu XB, Pan LP, Zhang JH, Gong FY (2015) Properties of ultrafine aluminum powders modified by facile grafting with glycidyl azide polymer. Chin J Energ Mater 23:813–816
28.
go back to reference Kuwahara T, Takizuka M, Onda T (2000) Combustion of GAP based energetic pyrolants. Propellants Explos Pyrotech 25:112–116CrossRef Kuwahara T, Takizuka M, Onda T (2000) Combustion of GAP based energetic pyrolants. Propellants Explos Pyrotech 25:112–116CrossRef
29.
go back to reference Balazs AC, Emrick T, Russell TP (2006) Nanoparticle polymer composites: where two small worlds meet. Science 314:1107–1110CrossRef Balazs AC, Emrick T, Russell TP (2006) Nanoparticle polymer composites: where two small worlds meet. Science 314:1107–1110CrossRef
30.
go back to reference Hagen TH, Jensen TL, Unneberg E, Stenstrom YH, Kristensen TE (2015) Curing of glycidyl azide polymer (GAP) diol using isocyanate, isocyanate-free, synchronous dual, and sequential dual curing systems. Propellants Explos Pyrotech 40:275–284CrossRef Hagen TH, Jensen TL, Unneberg E, Stenstrom YH, Kristensen TE (2015) Curing of glycidyl azide polymer (GAP) diol using isocyanate, isocyanate-free, synchronous dual, and sequential dual curing systems. Propellants Explos Pyrotech 40:275–284CrossRef
31.
go back to reference Keicher T, Kuglstatter W, Eisele S, Wetzel T, Krause H (2009) Isocyanate-free curing of glycidyl azide polymer(GAP) with bis-propargyl-succinate(II). Propellants Explos Pyrotech 34:210–217CrossRef Keicher T, Kuglstatter W, Eisele S, Wetzel T, Krause H (2009) Isocyanate-free curing of glycidyl azide polymer(GAP) with bis-propargyl-succinate(II). Propellants Explos Pyrotech 34:210–217CrossRef
32.
go back to reference Ramaswamy AL, Kaste P (2004) T.S. F.revino, A “micro-vision” of the physio-chemical phenomena occurring in nanoparticles of aluminum. J Energ Mater 21:1–24CrossRef Ramaswamy AL, Kaste P (2004) T.S. F.revino, A “micro-vision” of the physio-chemical phenomena occurring in nanoparticles of aluminum. J Energ Mater 21:1–24CrossRef
33.
go back to reference Kassaee MZ, Buazar F (2009) Al nanoparticles impact of media and current on the arc fabrication. J Manuf Process 11:31–37CrossRef Kassaee MZ, Buazar F (2009) Al nanoparticles impact of media and current on the arc fabrication. J Manuf Process 11:31–37CrossRef
34.
go back to reference Fernando KA, Smith MJ, Harruff BA, Lewis WK, Guliants EA, Bunker CE (2009) Sonochemically assisted thermal decomposition of alane N, N-dimethylethylamine with titanium(IV) isopropoxide in the presence of oleic acid to yield air-stable and size-selective aluminum core–shell nanoparticles. J Phys Chem C 113:500–503CrossRef Fernando KA, Smith MJ, Harruff BA, Lewis WK, Guliants EA, Bunker CE (2009) Sonochemically assisted thermal decomposition of alane N, N-dimethylethylamine with titanium(IV) isopropoxide in the presence of oleic acid to yield air-stable and size-selective aluminum core–shell nanoparticles. J Phys Chem C 113:500–503CrossRef
35.
go back to reference Gouget-Laemmel AC, Yang J, Lodhi MA, Siriwardena A, Aureau D, Boukherroub R, Chazalviel JN, Ozanam F, Szunerits S (2013) Functionalization of azide-terminated silicon surfaces with glycans using click chemistry: XPS and FTIR study. J Phys Chem C 117:368–375CrossRef Gouget-Laemmel AC, Yang J, Lodhi MA, Siriwardena A, Aureau D, Boukherroub R, Chazalviel JN, Ozanam F, Szunerits S (2013) Functionalization of azide-terminated silicon surfaces with glycans using click chemistry: XPS and FTIR study. J Phys Chem C 117:368–375CrossRef
36.
go back to reference Bhairamadgi NS, Gangarapu S, Campos MAC, Paulusse JMJ, Rijn CJM, Zuilhof H (2013) Efficient functionalization of oxide-free silicon (111) surfaces: Thiol-yne versus thiol-ene click chemistry. Langmuir 29:4535–4542CrossRef Bhairamadgi NS, Gangarapu S, Campos MAC, Paulusse JMJ, Rijn CJM, Zuilhof H (2013) Efficient functionalization of oxide-free silicon (111) surfaces: Thiol-yne versus thiol-ene click chemistry. Langmuir 29:4535–4542CrossRef
37.
go back to reference Enman J, Ramser K, Rova U, Berglund KA (2008) Raman analysis of synthetic eritadenine. J Raman Spectrosc 39:1464–1468CrossRef Enman J, Ramser K, Rova U, Berglund KA (2008) Raman analysis of synthetic eritadenine. J Raman Spectrosc 39:1464–1468CrossRef
38.
go back to reference Meda L, Nicastro C, Conte F, Cerofolini GF (2000) Experimental valuation of net atomic charge via XPS. Surf Interface Anal 29:851–855CrossRef Meda L, Nicastro C, Conte F, Cerofolini GF (2000) Experimental valuation of net atomic charge via XPS. Surf Interface Anal 29:851–855CrossRef
39.
go back to reference Shin WG, Han D, Park Y, Hyun HS, Sung HG, Sohn YK (2016) Combustion of boron particles coated with an energetic polymer material. Korean J Chem Eng 33:3016–3020CrossRef Shin WG, Han D, Park Y, Hyun HS, Sung HG, Sohn YK (2016) Combustion of boron particles coated with an energetic polymer material. Korean J Chem Eng 33:3016–3020CrossRef
40.
go back to reference Crouse CA, Pierce CJ, Spowart JE (2012) Synthesis and reactivity of aluminized fluorinated acrylic (AlFA) nanocomposites. Combust Flame 159:3199–3200CrossRef Crouse CA, Pierce CJ, Spowart JE (2012) Synthesis and reactivity of aluminized fluorinated acrylic (AlFA) nanocomposites. Combust Flame 159:3199–3200CrossRef
41.
go back to reference Wang QG, Zhang J, Zhang F (2009) The principle and application of the cone calorimeter. Mod Sci Instrum 6:36–39 Wang QG, Zhang J, Zhang F (2009) The principle and application of the cone calorimeter. Mod Sci Instrum 6:36–39
Metadata
Title
Enhanced water resistance and energy performance of core–shell aluminum nanoparticles via in situ grafting of energetic glycidyl azide polymer
Authors
Chengcheng Zeng
Jun Wang
Guansong He
Chuan Huang
Zhijian Yang
Shijun Liu
Feiyan Gong
Publication date
04-06-2018
Publisher
Springer US
Published in
Journal of Materials Science / Issue 17/2018
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2503-1

Other articles of this Issue 17/2018

Journal of Materials Science 17/2018 Go to the issue

Premium Partners