Skip to main content
Top
Published in: Journal of Polymer Research 2/2019

01-02-2019 | ORIGINAL PAPER

Enhancement of Na+ ion conduction in polymer blend electrolyte P(VdF-HFP) – PMMA- NaTf by the inclusion of EC

Authors: Patil Anitha Bhimarao Ranjana, Jeya S, Abarna S, Premalatha M, Arulsankar A, Sundaresan B

Published in: Journal of Polymer Research | Issue 2/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Polyvinylidenefluoride-co-hexafluoropropylene(PVdF-HFP) and polymethylmethacrylate (PMMA) and sodium triflate(NaTf) were used to prepare P(VdF-HFP)-PMMA-NaTf electrolytes using solution casting technique. The liquid plasticizer ethylene carbonate (EC) was added to the electrolytes in different concentrations say 10, 20, 30 and 40 wt% to achieve the enhancement of Na+ ion conduction at room temperature. Ionic conductivity of the samples was determined using AC impedance analysis and it was 7.86 × 10−8 S cm−1 for the polymer blend electrolyte at room temperature. Inclusion of EC was found to enhance the Na+ ion conduction and maximum value of ionic conductivity, 1.86 × 10−4 S cm−1, was obtained for the EC concentration of 30 wt%. This observation was explained on the basis of FTIR, XRD and AFM analysis of the samples which revealed the enhanced EC-polymer interaction and hence fast ion transport. Larger increase of dielectric constants and the reduced dielectric loss of EC added polymer blend electrolytes revealed the increase of the number of free Na+ ions. Thermal analysis of the samples was done through TGA-DTG technique and the thermal stability was found to decrease after the addition of EC.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ponrouch D, Monti A, Steen BB, Johansson P, Palacin MR (2015) Non-aqueous electrolytes for sodium-ion batteries. J Mater Chem A 3:22–42CrossRef Ponrouch D, Monti A, Steen BB, Johansson P, Palacin MR (2015) Non-aqueous electrolytes for sodium-ion batteries. J Mater Chem A 3:22–42CrossRef
2.
go back to reference Xuel Y, Li X, Quesnel DJ (2017). Int J Electrochem Sci 12:10674–10686 Xuel Y, Li X, Quesnel DJ (2017). Int J Electrochem Sci 12:10674–10686
3.
go back to reference Zhu Y, Yang Y, Fu L, Wu Y (2017) A porous gel-type composite membrane reinforced by nonwoven: promising polymer electrolyte with high performance for sodium ion batteries. Electrochim Acta 224:405–411CrossRef Zhu Y, Yang Y, Fu L, Wu Y (2017) A porous gel-type composite membrane reinforced by nonwoven: promising polymer electrolyte with high performance for sodium ion batteries. Electrochim Acta 224:405–411CrossRef
4.
go back to reference Xue Y, Quesnel DJ (2016) Synthesis and electrochemical study of sodium ion transport polymer gel electrolytes. RSC Adv 6:7504–7510CrossRef Xue Y, Quesnel DJ (2016) Synthesis and electrochemical study of sodium ion transport polymer gel electrolytes. RSC Adv 6:7504–7510CrossRef
5.
go back to reference Cisnerosa CSM, Levenfelda B, Vareza A, Sancheza JY (2016) Development of sodium-conducting polymer electrolytes: comparison between film-casting and films obtained via green processes. Electrochim Acta 192:456–466CrossRef Cisnerosa CSM, Levenfelda B, Vareza A, Sancheza JY (2016) Development of sodium-conducting polymer electrolytes: comparison between film-casting and films obtained via green processes. Electrochim Acta 192:456–466CrossRef
6.
go back to reference Aravindan V, Lakshmi C, Vickraman P (2009) Investigations on Na+ ion conducting polyvinylidenefluoride-co-hexafluoropropylene/poly ethylmethacrylate blend polymer electrolytes. Curr Appl Phys 9:1106–1111CrossRef Aravindan V, Lakshmi C, Vickraman P (2009) Investigations on Na+ ion conducting polyvinylidenefluoride-co-hexafluoropropylene/poly ethylmethacrylate blend polymer electrolytes. Curr Appl Phys 9:1106–1111CrossRef
7.
go back to reference Tripathi SK, Gupta A, Kumari M (2012) Studies on electrical conductivity and dielectric behaviour of PVdF–HFP–PMMA–NaI polymer blend electrolyte. Bull Mater Sci 35(6):969–975CrossRef Tripathi SK, Gupta A, Kumari M (2012) Studies on electrical conductivity and dielectric behaviour of PVdF–HFP–PMMA–NaI polymer blend electrolyte. Bull Mater Sci 35(6):969–975CrossRef
8.
go back to reference Tripathi SK, Jain A, Gupta A, Kumari M, Pure IJ (2013) Appl. Physics 51:315–319 Tripathi SK, Jain A, Gupta A, Kumari M, Pure IJ (2013) Appl. Physics 51:315–319
9.
go back to reference Mindemark J, Mogensen R, Michael Smith J, Manuela Silva M, Brandell D (2017) Polycarbonates as alternative electrolyte host materials for solid-state sodium batteries. Electrochem Commun 77:58–61CrossRef Mindemark J, Mogensen R, Michael Smith J, Manuela Silva M, Brandell D (2017) Polycarbonates as alternative electrolyte host materials for solid-state sodium batteries. Electrochem Commun 77:58–61CrossRef
10.
go back to reference Noor SAM, Su NC, Mohamad NS, Ahmad A, Yahya MZA, Zhu HM, Forsyth DR, MacFarlane (2017). Electrochimica Acta 247:983–993CrossRef Noor SAM, Su NC, Mohamad NS, Ahmad A, Yahya MZA, Zhu HM, Forsyth DR, MacFarlane (2017). Electrochimica Acta 247:983–993CrossRef
11.
go back to reference Austen Angell C (2017) Polymer electrolytes—Some principles, cautions, and new practices. Electrochim Acta 250:368–375CrossRef Austen Angell C (2017) Polymer electrolytes—Some principles, cautions, and new practices. Electrochim Acta 250:368–375CrossRef
12.
go back to reference Zhua X, Zhao R, Deng W, Ai X, Yang H, Cao Y (2015) An All-solid-state and All-organic Sodium-ion Battery based on Redox-active Polymers and Plastic Crystal Electrolyte. Electrochim Acta 178:55–59CrossRef Zhua X, Zhao R, Deng W, Ai X, Yang H, Cao Y (2015) An All-solid-state and All-organic Sodium-ion Battery based on Redox-active Polymers and Plastic Crystal Electrolyte. Electrochim Acta 178:55–59CrossRef
13.
go back to reference Singh P, Bharati DC, Gupta PN, Saroj AL (2018) Vibrational, thermal and ion transport properties of PVA-PVP-PEG-MeSO 4 Na based polymer blend electrolyte films. J Non-Cryst Solids 494:21–30CrossRef Singh P, Bharati DC, Gupta PN, Saroj AL (2018) Vibrational, thermal and ion transport properties of PVA-PVP-PEG-MeSO 4 Na based polymer blend electrolyte films. J Non-Cryst Solids 494:21–30CrossRef
14.
go back to reference Jayanthi S, Arulsankar A, Sundaresan B (2016). Appl Phys A Mater Sci Process 122(109):1–11 Jayanthi S, Arulsankar A, Sundaresan B (2016). Appl Phys A Mater Sci Process 122(109):1–11
15.
go back to reference Rajendran S, Prabhu MR, Rani M (2008). Int J Electrochem Sci 3:282–290 Rajendran S, Prabhu MR, Rani M (2008). Int J Electrochem Sci 3:282–290
16.
go back to reference Chaurasia SK, Saroj AL, Singh S, VK TAK, Gupta AK, Verma YL, Singh RK (2015) Studies on structural, thermal and AC conductivity scaling of PEO-LiPF6polymer electrolyte with added ionic liquid [BMIMPF6]. AIP Adv 5(077178):1–13 Chaurasia SK, Saroj AL, Singh S, VK TAK, Gupta AK, Verma YL, Singh RK (2015) Studies on structural, thermal and AC conductivity scaling of PEO-LiPF6polymer electrolyte with added ionic liquid [BMIMPF6]. AIP Adv 5(077178):1–13
17.
go back to reference Saroj AL, Singh RK (2012) Thermal, dielectric and conductivity studies on PVA/Ionic liquid [EMIM][EtSO4] based polymer electrolytes. J Phys Chem Solids 73:162–168CrossRef Saroj AL, Singh RK (2012) Thermal, dielectric and conductivity studies on PVA/Ionic liquid [EMIM][EtSO4] based polymer electrolytes. J Phys Chem Solids 73:162–168CrossRef
18.
go back to reference Liew CW, Arifin KH, Kawamura J, Iwai Y, Ramesh S, Arof AK (2015) J. Non-cyst. Solids 425:163–172 Liew CW, Arifin KH, Kawamura J, Iwai Y, Ramesh S, Arof AK (2015) J. Non-cyst. Solids 425:163–172
19.
go back to reference Ramesh S, Liew CW, Arof AK (2011) Ion conducting corn starch biopolymer electrolytes doped with ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate. J Non-Cyst Solids 357:3654–3660CrossRef Ramesh S, Liew CW, Arof AK (2011) Ion conducting corn starch biopolymer electrolytes doped with ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate. J Non-Cyst Solids 357:3654–3660CrossRef
20.
go back to reference Ning W, Xingxiang Z, Haihuib L, Benqiao H (2009) 1-Allyl-3-methylimidazolium chloride plasticized-corn starch as solid biopolymer electrolytes. Carbohydr Polym 76:482–484CrossRef Ning W, Xingxiang Z, Haihuib L, Benqiao H (2009) 1-Allyl-3-methylimidazolium chloride plasticized-corn starch as solid biopolymer electrolytes. Carbohydr Polym 76:482–484CrossRef
21.
go back to reference Ji KS, Moon HS, Kim JW, Park JW (2003) Role of functional nano-sized inorganic fillers in poly(ethylene) oxide-based polymer electrolytes. J Power Sources 117:124–130CrossRef Ji KS, Moon HS, Kim JW, Park JW (2003) Role of functional nano-sized inorganic fillers in poly(ethylene) oxide-based polymer electrolytes. J Power Sources 117:124–130CrossRef
22.
go back to reference Isa KBM, Othman L, Zainol NH, Samin SM, Chong WG, Osman Z, Arof AK (2014) Key Eng. Mater. 594-595:786–792 Isa KBM, Othman L, Zainol NH, Samin SM, Chong WG, Osman Z, Arof AK (2014) Key Eng. Mater. 594-595:786–792
23.
go back to reference Zidan HM, El-Ghamaz NA, Abdelghany AM, Lotfy A (2016). Int JElectrochem Sci 11:9041–9056CrossRef Zidan HM, El-Ghamaz NA, Abdelghany AM, Lotfy A (2016). Int JElectrochem Sci 11:9041–9056CrossRef
24.
go back to reference Othman L, Md Isa KB, Osman Z, Yahya R (2017) Ionic Transport Studies of Gel Polymer Electrolytes Containing Sodium Salt. Mater Today Proc 4:5122–5129CrossRef Othman L, Md Isa KB, Osman Z, Yahya R (2017) Ionic Transport Studies of Gel Polymer Electrolytes Containing Sodium Salt. Mater Today Proc 4:5122–5129CrossRef
25.
go back to reference Zebardastan N, Khanmirzaei MH, Ramesh S, Ramesh K (2017) Presence of NaI in PEO/PVdF-HFP blend based gel polymer electrolytes for fabrication of dye-sensitized solar cells. Mater Sci Semicond Process 66:144–148CrossRef Zebardastan N, Khanmirzaei MH, Ramesh S, Ramesh K (2017) Presence of NaI in PEO/PVdF-HFP blend based gel polymer electrolytes for fabrication of dye-sensitized solar cells. Mater Sci Semicond Process 66:144–148CrossRef
26.
go back to reference Vignarooban K, Badami P, Dissanayake KL, Ravirajan P, Kannan AM (2017) Poly-acrylonitrile-based gel-polymer electrolytes for sodium-ion batteries. Ionics 23:2817–2822CrossRef Vignarooban K, Badami P, Dissanayake KL, Ravirajan P, Kannan AM (2017) Poly-acrylonitrile-based gel-polymer electrolytes for sodium-ion batteries. Ionics 23:2817–2822CrossRef
27.
go back to reference Hashmi SA, Bhat MY, Singh MK, Kalyana Sundaram NT, Raghupathy PC, Tanaka H (2016) Ionic liquid-based sodium ion-conducting composite gel polymer electrolytes: effect of active and passive fillers. J Solid State Electrochem 20(10):2817–2826CrossRef Hashmi SA, Bhat MY, Singh MK, Kalyana Sundaram NT, Raghupathy PC, Tanaka H (2016) Ionic liquid-based sodium ion-conducting composite gel polymer electrolytes: effect of active and passive fillers. J Solid State Electrochem 20(10):2817–2826CrossRef
28.
go back to reference Kumar D, Hashmi SA (2010) Ionic liquid based sodium ion conducting gel polymer electrolytes. Solid State Ionics 181:416–423CrossRef Kumar D, Hashmi SA (2010) Ionic liquid based sodium ion conducting gel polymer electrolytes. Solid State Ionics 181:416–423CrossRef
29.
go back to reference KarthikeyanS, Sikkanthar S, Selvasekarapandian S, Arunkumar D, Nithya H, Kawamura J (2016) Structural, electrical and electrochemical properties of polyacrylonitrile-ammonium hexaflurophosphate polymer electrolyte system. J Polym Res 23:51 KarthikeyanS, Sikkanthar S, Selvasekarapandian S, Arunkumar D, Nithya H, Kawamura J (2016) Structural, electrical and electrochemical properties of polyacrylonitrile-ammonium hexaflurophosphate polymer electrolyte system. J Polym Res 23:51
30.
go back to reference Shmukler LE, Van Thuc N, Fadeeva YA, Safonova LP (2012) Proton conducting gel electrolytes based on polymethylmethacrylate doped with sulfuric acid solutions in N,N-dimethylformamide. J Polym Res 19:9770CrossRef Shmukler LE, Van Thuc N, Fadeeva YA, Safonova LP (2012) Proton conducting gel electrolytes based on polymethylmethacrylate doped with sulfuric acid solutions in N,N-dimethylformamide. J Polym Res 19:9770CrossRef
31.
go back to reference Chandra MVL, Karthikeyan S, Selvasekarapandian S, Premalatha M (2017) Sampath Monisha. J Polym Eng 37(6):617–631 Chandra MVL, Karthikeyan S, Selvasekarapandian S, Premalatha M (2017) Sampath Monisha. J Polym Eng 37(6):617–631
32.
go back to reference Rhodes CP, Frech R (1999) Cationâ anion and cationâ polymer interactions in (PEO)nNaCF3SO3 (n=1â 80). Solid State Ionics 121:91–99CrossRef Rhodes CP, Frech R (1999) Cationâ anion and cationâ polymer interactions in (PEO)nNaCF3SO3 (n=1â 80). Solid State Ionics 121:91–99CrossRef
33.
go back to reference Saika D, Kumar A (2004) Ionic conduction in P(VDF-HFP)/PVDF–(PC + DEC)–LiClO 4 polymer gel electrolytes. Electrochim Acta 49:2581–2589CrossRef Saika D, Kumar A (2004) Ionic conduction in P(VDF-HFP)/PVDF–(PC + DEC)–LiClO 4 polymer gel electrolytes. Electrochim Acta 49:2581–2589CrossRef
34.
go back to reference Kumar GG, Kim P, Kim AR, Nahm KS, Elizabeth RN (2009). Mater Chem Phys 11:40–46CrossRef Kumar GG, Kim P, Kim AR, Nahm KS, Elizabeth RN (2009). Mater Chem Phys 11:40–46CrossRef
35.
go back to reference Johnscher AK (1977) The ‘universal’ dielectric response. Nature 267:673–679CrossRef Johnscher AK (1977) The ‘universal’ dielectric response. Nature 267:673–679CrossRef
36.
go back to reference Natesan B, Karan NK, Katiyar RS (2006). Phys Rev E 74(0420801):1–4 Natesan B, Karan NK, Katiyar RS (2006). Phys Rev E 74(0420801):1–4
37.
go back to reference Sudhakar YN, Selvakumar M, Krishna Bhat D (2018) Biopolymer Electrolytes: Fundamentals and Applications in Energy Storage. Elsevier ISBN: 978–0–12-813447-4 Sudhakar YN, Selvakumar M, Krishna Bhat D (2018) Biopolymer Electrolytes: Fundamentals and Applications in Energy Storage. Elsevier ISBN: 978–0–12-813447-4
Metadata
Title
Enhancement of Na+ ion conduction in polymer blend electrolyte P(VdF-HFP) – PMMA- NaTf by the inclusion of EC
Authors
Patil Anitha Bhimarao Ranjana
Jeya S
Abarna S
Premalatha M
Arulsankar A
Sundaresan B
Publication date
01-02-2019
Publisher
Springer Netherlands
Published in
Journal of Polymer Research / Issue 2/2019
Print ISSN: 1022-9760
Electronic ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-019-1704-x

Other articles of this Issue 2/2019

Journal of Polymer Research 2/2019 Go to the issue

Premium Partners