Skip to main content
Top
Published in: International Journal on Interactive Design and Manufacturing (IJIDeM) 3/2022

08-03-2022 | Industrial Paper

Enhancement of train braking efficiency by optimal flow control characteristics with aerodynamic braking system

Authors: J. Bruce Ralphin Rose, M. Vikraman

Published in: International Journal on Interactive Design and Manufacturing (IJIDeM) | Issue 3/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The high speed rail network is an essential part for any country to achieve the development goals within the stipulated time. The speed enhancement proposal is adversely affected by the braking efficiency of conventional systems during the emergency as well as the service braking conditions. The present work is focused on the improvement of braking efficiency in a large train configuration through cost effective aerodynamic braking system (ABS) which is in the state of research in developing countries. The flow behavior around the star locomotive of Indian railways (WAP7) with a coach model is considered for the feasibility study without and with ABS that is installed at the mid-section of the locomotive. A detailed steady-state flow field characterization is done to compute the amount of aerodynamic drag that is being developed by the ABS in the WAP7 configuration at the speed range of 100 km/h to 180 km/h. In the idealized train model, the braking plates are deflected at various angles (0°–90°) and the aerodynamic drag is evaluated for each 10° increment in the spoiler angle. Further, the standard k–ω turbulence model with SST coupled equation solver is used for the CFD simulations because of its familiarity over the turbulence behavior as specified by ANSYS Inc. The distribution of wake vortices, separation bubbles and low pressure zones are well-captured through the computational analysis while deploying the ABS at various angles. It is observed that the aerodynamic drag is significantly improved as the spoilers are deflected more than 40° that reduces the braking distance without any mechanical losses. This novel effort could revolutionize the braking system present in the WAP7 loco and similar configurations in the near future with an enhanced braking efficiency.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Niu, J., Wang, Y., Chen, Z., Liu, F.: Numerical study on the effect of braking plates on flow structure and vehicle and enhanced braking of vehicles inside and outside tunnels. J. Wind Eng. Ind. Aerodyn. 214, 104670 (2021)CrossRef Niu, J., Wang, Y., Chen, Z., Liu, F.: Numerical study on the effect of braking plates on flow structure and vehicle and enhanced braking of vehicles inside and outside tunnels. J. Wind Eng. Ind. Aerodyn. 214, 104670 (2021)CrossRef
2.
go back to reference Ajta, S.: Paper series CFD aerodynamics of the french high-speed train. 1992. Ajta, S.: Paper series CFD aerodynamics of the french high-speed train. 1992.
4.
go back to reference Patil, V.S., Banoo, F., Kurahatti, R.V., Patil, A.Y., Raju, G.U., Afzal, A., Soudagar, M.E.M., Kumar, R., Ahamed Saleel, C.: A study of sound pressure level (SPL) inside the truck cabin for new acoustic materials: an experimental and FEA approach. Alex. Eng. J. 60, 5949–5976 (2021)CrossRef Patil, V.S., Banoo, F., Kurahatti, R.V., Patil, A.Y., Raju, G.U., Afzal, A., Soudagar, M.E.M., Kumar, R., Ahamed Saleel, C.: A study of sound pressure level (SPL) inside the truck cabin for new acoustic materials: an experimental and FEA approach. Alex. Eng. J. 60, 5949–5976 (2021)CrossRef
5.
go back to reference Fujii, K., Ogawa, T.: Aerodynamics of high speed trains passing by each other. Comput. Fluids 24(8), 897–908 (1995)MATHCrossRef Fujii, K., Ogawa, T.: Aerodynamics of high speed trains passing by each other. Comput. Fluids 24(8), 897–908 (1995)MATHCrossRef
6.
go back to reference Vikraman, M., Bruce Ralphin Rose, J., Ganesh Natarajan, S.: Investigation on the aerodynamic efficiency of braking spoiler for high speed train applications. Int. J. Comput. Methods 18(05), 2150009 (2021)MathSciNetMATHCrossRef Vikraman, M., Bruce Ralphin Rose, J., Ganesh Natarajan, S.: Investigation on the aerodynamic efficiency of braking spoiler for high speed train applications. Int. J. Comput. Methods 18(05), 2150009 (2021)MathSciNetMATHCrossRef
7.
go back to reference Wu, M.L., Zhu, Y.Y., Tian, C., Fei, W.W.: Influence of aerodynamic braking on the pressure wave of a crossing high-speed train. J. Zhejiang Univ. Sci. A 12(12), 979–984 (2011)CrossRef Wu, M.L., Zhu, Y.Y., Tian, C., Fei, W.W.: Influence of aerodynamic braking on the pressure wave of a crossing high-speed train. J. Zhejiang Univ. Sci. A 12(12), 979–984 (2011)CrossRef
8.
go back to reference Ghazanfari, M., Hosseini, T.P.: Study on braking panels in high speed trains using CFD. Adv. Railw. Eng. Int. J. 2(2), 93–106 (2015) Ghazanfari, M., Hosseini, T.P.: Study on braking panels in high speed trains using CFD. Adv. Railw. Eng. Int. J. 2(2), 93–106 (2015)
9.
go back to reference Jianyong, Z., Mengling, W., Chun, T., Ying, X., Zhuojun, L., Zhongkai, C.: Aerodynamic braking device for high-speed trains: design, simulation and experiment. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 228(3), 260–270 (2014)CrossRef Jianyong, Z., Mengling, W., Chun, T., Ying, X., Zhuojun, L., Zhongkai, C.: Aerodynamic braking device for high-speed trains: design, simulation and experiment. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 228(3), 260–270 (2014)CrossRef
10.
go back to reference Xi, Y., Li, X., Fu, Q., Gao, L., Chen, Z.: Research on aerodynamic brake of high-speed train. Appl. Mech. Mater. 80–81, 932–936 (2011)CrossRef Xi, Y., Li, X., Fu, Q., Gao, L., Chen, Z.: Research on aerodynamic brake of high-speed train. Appl. Mech. Mater. 80–81, 932–936 (2011)CrossRef
11.
go back to reference Mysore, T.H.M., Patil, A.Y., Raju, G.U., Banapurmath, N.R., Bhovi, P.M., Afzal, A., Alamri, S., Saleel, C.A.: Investigation of mechanical and physical properties of big sheep horn as an alternative biomaterial for structural applications. Materials (Basel) 14(14), 4039 (2021). https://doi.org/10.3390/ma14144039CrossRef Mysore, T.H.M., Patil, A.Y., Raju, G.U., Banapurmath, N.R., Bhovi, P.M., Afzal, A., Alamri, S., Saleel, C.A.: Investigation of mechanical and physical properties of big sheep horn as an alternative biomaterial for structural applications. Materials (Basel) 14(14), 4039 (2021). https://​doi.​org/​10.​3390/​ma14144039CrossRef
12.
go back to reference Niu, J., Wang, Y., Liu, F., Li, R.: Numerical study on the effect of a downstream braking plate on the detailed flow field and unsteady aerodynamic characteristics of an upstream braking plate with or without a crosswind. Veh. Syst. Dyn. 59(5), 657–674 (2019)CrossRef Niu, J., Wang, Y., Liu, F., Li, R.: Numerical study on the effect of a downstream braking plate on the detailed flow field and unsteady aerodynamic characteristics of an upstream braking plate with or without a crosswind. Veh. Syst. Dyn. 59(5), 657–674 (2019)CrossRef
13.
go back to reference Wang, S., Burton, D., Herbst, A.H., Sheridan, J., Thompson, M.C.: The impact of rails on high-speed train slipstream and wake. J. Wind Eng. Ind. Aerodyn. 198, 104114 (2020)CrossRef Wang, S., Burton, D., Herbst, A.H., Sheridan, J., Thompson, M.C.: The impact of rails on high-speed train slipstream and wake. J. Wind Eng. Ind. Aerodyn. 198, 104114 (2020)CrossRef
15.
go back to reference Poornakanta, H., Kadam, K., Pawar, D., Medar, K., Makandar, I., Patil, A.Y., Kotturshettar, B.B.: Optimization of sluice gate under fatigue life subjected for forced vibration by fluid flow. J. Mech. Eng. - Strojnícky časopis 68(3), 129–142 (2018)CrossRef Poornakanta, H., Kadam, K., Pawar, D., Medar, K., Makandar, I., Patil, A.Y., Kotturshettar, B.B.: Optimization of sluice gate under fatigue life subjected for forced vibration by fluid flow. J. Mech. Eng. - Strojnícky časopis 68(3), 129–142 (2018)CrossRef
16.
go back to reference Chen, G., Liang, X.-F., Li, X.-B., Zhou, D., Lien, F.-S., Wang, J.: Dynamic analysis of the effect of platoon configuration on train aerodynamic performance. J. Wind Eng. Ind. Aerodyn. 211, 104564 (2021)CrossRef Chen, G., Liang, X.-F., Li, X.-B., Zhou, D., Lien, F.-S., Wang, J.: Dynamic analysis of the effect of platoon configuration on train aerodynamic performance. J. Wind Eng. Ind. Aerodyn. 211, 104564 (2021)CrossRef
17.
go back to reference Zhang, L., Li, T., Zhang, J.: Effect of braking plates on the aerodynamic behaviors of a high-speed train subjected to crosswinds. Energies 14(2), 401 (2021)CrossRef Zhang, L., Li, T., Zhang, J.: Effect of braking plates on the aerodynamic behaviors of a high-speed train subjected to crosswinds. Energies 14(2), 401 (2021)CrossRef
19.
go back to reference Hamiga, W.M., Ciesielka, W.B.: Aeroacoustics numerical analysis of the vehicle model. Appl. Sci. 10, 9066 (2020)CrossRef Hamiga, W.M., Ciesielka, W.B.: Aeroacoustics numerical analysis of the vehicle model. Appl. Sci. 10, 9066 (2020)CrossRef
20.
go back to reference Niu, J., Wang, Y., Wu, D., Liu, F.: Comparison of different configurations of aerodynamic braking plate on the flow around a high-speed train. Eng. Appl. Comput. Fluid Mech. 14(1), 655–668 (2020) Niu, J., Wang, Y., Wu, D., Liu, F.: Comparison of different configurations of aerodynamic braking plate on the flow around a high-speed train. Eng. Appl. Comput. Fluid Mech. 14(1), 655–668 (2020)
21.
go back to reference Tian, C., Wu, M.L., Zhu, Y.Y., Chen, M.T.: Running safety of high-speed train equipped with aerodynamic brake under cross wind. Adv. Mater. Res. 614–615, 348–354 (2013)CrossRef Tian, C., Wu, M.L., Zhu, Y.Y., Chen, M.T.: Running safety of high-speed train equipped with aerodynamic brake under cross wind. Adv. Mater. Res. 614–615, 348–354 (2013)CrossRef
23.
go back to reference Niu, J., Wang, Y., Li, R., Liu, F.: Comparison of aerodynamic characteristics of high-speed train for different configurations of aerodynamic braking plates installed in inter-car gap region. Flow Turbul. Combust. 106(1), 139–161 (2021)CrossRef Niu, J., Wang, Y., Li, R., Liu, F.: Comparison of aerodynamic characteristics of high-speed train for different configurations of aerodynamic braking plates installed in inter-car gap region. Flow Turbul. Combust. 106(1), 139–161 (2021)CrossRef
24.
go back to reference Niu, J., Wang, Y., Zhang, L., Yuan, Y.: Numerical analysis of aerodynamic characteristics of high-speed train with different train nose lengths. Int. J. Heat Mass Transf. 127, 188–199 (2018)CrossRef Niu, J., Wang, Y., Zhang, L., Yuan, Y.: Numerical analysis of aerodynamic characteristics of high-speed train with different train nose lengths. Int. J. Heat Mass Transf. 127, 188–199 (2018)CrossRef
25.
go back to reference Schetz, J.A.: Aerodynamics of high-speed trains. Muhlenberg 33, 371–414 (2001)MATH Schetz, J.A.: Aerodynamics of high-speed trains. Muhlenberg 33, 371–414 (2001)MATH
26.
go back to reference Baker, C., Johnson, T., Flynn, D., Hemida, H., Quinn, A., Soper, D., Sterling, M.: Train aerodynamics. Fundamentals and applications. Physics 677(1), 129–169 (2019) Baker, C., Johnson, T., Flynn, D., Hemida, H., Quinn, A., Soper, D., Sterling, M.: Train aerodynamics. Fundamentals and applications. Physics 677(1), 129–169 (2019)
27.
go back to reference Osth, J., Krajnovic, S.: A study of the aerodynamics of a generic container freight wagon using Large–Eddy simulation. J. Fluids Struct. 44, 31–51 (2014)CrossRef Osth, J., Krajnovic, S.: A study of the aerodynamics of a generic container freight wagon using Large–Eddy simulation. J. Fluids Struct. 44, 31–51 (2014)CrossRef
28.
go back to reference Niu, J., Wang, Y., Liu, F., Chen, Z.: Comparative study on the effect of aerodynamic braking plates mounted at the inter-carriage region of a high-speed train with pantograph and air-conditioning unit for enhanced braking. J. Wind Eng. Ind. Aerodyn. 206, 104360 (2020)CrossRef Niu, J., Wang, Y., Liu, F., Chen, Z.: Comparative study on the effect of aerodynamic braking plates mounted at the inter-carriage region of a high-speed train with pantograph and air-conditioning unit for enhanced braking. J. Wind Eng. Ind. Aerodyn. 206, 104360 (2020)CrossRef
29.
go back to reference Wang, S., Burton, D., Herbst, A.H., Sheridan, J., Thompson, M.C.: The effect of the ground condition on high-speed train slipstream. J. Wind Eng. Ind. Aerodyn. 172, 230–243 (2018)CrossRef Wang, S., Burton, D., Herbst, A.H., Sheridan, J., Thompson, M.C.: The effect of the ground condition on high-speed train slipstream. J. Wind Eng. Ind. Aerodyn. 172, 230–243 (2018)CrossRef
30.
go back to reference Muld, T.W.: Analysis of flow structures in wake flows for train aerodynamics. 2010. Muld, T.W.: Analysis of flow structures in wake flows for train aerodynamics. 2010.
32.
go back to reference Lee, M.K., Bhandari, B.: The application of aerodynamic brake for high-speed trains. J. Mech. Sci. Technol. 32(12), 5749–5754 (2018)CrossRef Lee, M.K., Bhandari, B.: The application of aerodynamic brake for high-speed trains. J. Mech. Sci. Technol. 32(12), 5749–5754 (2018)CrossRef
33.
go back to reference Brockie, N.J.W., Baker, C.J.: The aerodynamic drag of high-speed trains. J. Wind Eng. Ind. Aerodyn. 34, 273–290 (1990)CrossRef Brockie, N.J.W., Baker, C.J.: The aerodynamic drag of high-speed trains. J. Wind Eng. Ind. Aerodyn. 34, 273–290 (1990)CrossRef
34.
go back to reference Lee, S.W., Kim, H.L.: Numerical study of active aerodynamic control via flow discharge on a high-camber rear spoiler of a road vehicle. Appl. Sci. 9(22), 4783 (2019)CrossRef Lee, S.W., Kim, H.L.: Numerical study of active aerodynamic control via flow discharge on a high-camber rear spoiler of a road vehicle. Appl. Sci. 9(22), 4783 (2019)CrossRef
35.
go back to reference Jianyong, Z., Mengling, W., Chun, T., Ying, X., Zhuojun, L., Zhongkai, C.: Aerodynamic braking device for high-speed trains: design, simulation and experiment. Proc. Inst. Mech. Eng. Part F: J. Rail Rapid Transit 228(3), 260–270 (2012)CrossRef Jianyong, Z., Mengling, W., Chun, T., Ying, X., Zhuojun, L., Zhongkai, C.: Aerodynamic braking device for high-speed trains: design, simulation and experiment. Proc. Inst. Mech. Eng. Part F: J. Rail Rapid Transit 228(3), 260–270 (2012)CrossRef
36.
go back to reference Tian, C., Qian, J., Feng, Y.: Control method applicable to small distributed aerodynamic brake device. In: 8th International Symposium on Next Generation Electronics. ISNE 2019; 11502169: 2019–2021. Tian, C., Qian, J., Feng, Y.: Control method applicable to small distributed aerodynamic brake device. In: 8th International Symposium on Next Generation Electronics. ISNE 2019; 11502169: 2019–2021.
37.
go back to reference Khayrullina, A., Blocken, B., Janssen, W., Straathof, J.: CFD simulation of train aerodynamics: train-induced wind conditions at an underground railroad passenger platform. J. Wind Eng. Ind. Aerodyn. 139, 100–110 (2015)CrossRef Khayrullina, A., Blocken, B., Janssen, W., Straathof, J.: CFD simulation of train aerodynamics: train-induced wind conditions at an underground railroad passenger platform. J. Wind Eng. Ind. Aerodyn. 139, 100–110 (2015)CrossRef
38.
go back to reference Raghunathan, R.S., Kim, H.D., Setoguchi, T.: Aerodynamics of high-speed railway train. Prog. Aerosp. Sci. 38(6–7), 469–514 (2002)CrossRef Raghunathan, R.S., Kim, H.D., Setoguchi, T.: Aerodynamics of high-speed railway train. Prog. Aerosp. Sci. 38(6–7), 469–514 (2002)CrossRef
39.
go back to reference Gawthorpe, R.G.: Aerodynamics of trains in the open air. Railw. Eng. Int. 3, 7–12 (1978) Gawthorpe, R.G.: Aerodynamics of trains in the open air. Railw. Eng. Int. 3, 7–12 (1978)
40.
go back to reference Zampieri, A., Rocchi, D., Schito, P., Somaschini, C.: Numerical-experimental analysis of the slipstream produced by a high speed train. J. Wind Eng. Ind. Aerodyn. 196, 104022 (2020)CrossRef Zampieri, A., Rocchi, D., Schito, P., Somaschini, C.: Numerical-experimental analysis of the slipstream produced by a high speed train. J. Wind Eng. Ind. Aerodyn. 196, 104022 (2020)CrossRef
41.
go back to reference Robertson, F.H., Bourriez, F., He, M., Soper, D., Baker, C., Hemida, H., Sterling, M.: An experimental investigation of the aerodynamic flows created by lorries travelling in a long platoon. J. Wind Eng. Ind. Aerodyn. 193, 103966 (2019)CrossRef Robertson, F.H., Bourriez, F., He, M., Soper, D., Baker, C., Hemida, H., Sterling, M.: An experimental investigation of the aerodynamic flows created by lorries travelling in a long platoon. J. Wind Eng. Ind. Aerodyn. 193, 103966 (2019)CrossRef
42.
go back to reference Viswanathan, H.: Aerodynamic performance of several passive vortex generator configurations on an Ahmed body subjected to yaw angles. J. Braz. Soc. Mech. Sci. Eng. 43(3), 1–23 (2021)CrossRef Viswanathan, H.: Aerodynamic performance of several passive vortex generator configurations on an Ahmed body subjected to yaw angles. J. Braz. Soc. Mech. Sci. Eng. 43(3), 1–23 (2021)CrossRef
43.
go back to reference Jia, L., Zhou, D., Niu, J.: Numerical calculation of boundary layers and wake characteristics of high-speed trains with different lengths. PLoS ONE 12(12), 1–15 (2017)CrossRef Jia, L., Zhou, D., Niu, J.: Numerical calculation of boundary layers and wake characteristics of high-speed trains with different lengths. PLoS ONE 12(12), 1–15 (2017)CrossRef
44.
go back to reference Zhang, J., Li, J., Tian, H., Gao, G., Sheridan, J.: Impact of ground and wheel boundary conditions on numerical simulation of the high-speed train aerodynamic performance. J. Fluids Struct. 61, 249–261 (2016)CrossRef Zhang, J., Li, J., Tian, H., Gao, G., Sheridan, J.: Impact of ground and wheel boundary conditions on numerical simulation of the high-speed train aerodynamic performance. J. Fluids Struct. 61, 249–261 (2016)CrossRef
45.
go back to reference Wei, Z., New, T.H., Lian, L., Zhang, Y.: Leading-edge tubercles delay flow separation for a tapered swept-back wing at very low Reynolds number. Ocean Eng. 181, 173–184 (2019)CrossRef Wei, Z., New, T.H., Lian, L., Zhang, Y.: Leading-edge tubercles delay flow separation for a tapered swept-back wing at very low Reynolds number. Ocean Eng. 181, 173–184 (2019)CrossRef
46.
go back to reference Sterling, M., Baker, C.J., Jordan, S.C., Johnson, T.: A study of the slipstreams of high-speed passenger trains and freight trains. Proc. Inst. Mech. Eng. Part F: J. Rail Rapid Transit 222(2), 177–193 (2008)CrossRef Sterling, M., Baker, C.J., Jordan, S.C., Johnson, T.: A study of the slipstreams of high-speed passenger trains and freight trains. Proc. Inst. Mech. Eng. Part F: J. Rail Rapid Transit 222(2), 177–193 (2008)CrossRef
47.
go back to reference Flynn, D., Hemida, H., Soper, D., Baker, C.: Detached-eddy simulation of the slipstream of an operational freight train. J. Wind Eng. Ind. Aerodyn. 132, 1–12 (2014)CrossRef Flynn, D., Hemida, H., Soper, D., Baker, C.: Detached-eddy simulation of the slipstream of an operational freight train. J. Wind Eng. Ind. Aerodyn. 132, 1–12 (2014)CrossRef
48.
go back to reference Ce, L., Pan, Y.: Shear flows in the near-turbulent wake region of high speed trains. Fluid Dyn. Mater. Process. 16(6), 1115–1128 (2020)CrossRef Ce, L., Pan, Y.: Shear flows in the near-turbulent wake region of high speed trains. Fluid Dyn. Mater. Process. 16(6), 1115–1128 (2020)CrossRef
Metadata
Title
Enhancement of train braking efficiency by optimal flow control characteristics with aerodynamic braking system
Authors
J. Bruce Ralphin Rose
M. Vikraman
Publication date
08-03-2022
Publisher
Springer Paris
Published in
International Journal on Interactive Design and Manufacturing (IJIDeM) / Issue 3/2022
Print ISSN: 1955-2513
Electronic ISSN: 1955-2505
DOI
https://doi.org/10.1007/s12008-022-00864-7

Other articles of this Issue 3/2022

International Journal on Interactive Design and Manufacturing (IJIDeM) 3/2022 Go to the issue

Premium Partner