Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

21-02-2020 | Original Article | Issue 9/2020

International Journal of Machine Learning and Cybernetics 9/2020

Enhancing a machine learning binarization framework by perturbation operators: analysis on the multidimensional knapsack problem

Journal:
International Journal of Machine Learning and Cybernetics > Issue 9/2020
Authors:
José García, Eduardo Lalla-Ruiz, Stefan Voß, Enrique López Droguett
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Solving combinatorial optimization problems is of great interest in the areas of computer science and operations research. Optimization algorithms and particularly metaheuristics are constantly improved in order to reduce execution times, increase the quality of solutions and address larger instances. In this work, an improvement of the binarization framework which uses the K-means technique is developed. To achieve this, a perturbation operator based on the K-nearest neighbor technique is incorporated into the framework with the aim of generating more robust binarized algorithms. The technique of K-nearest neighbors is used for improving the properties of diversification and intensification of metaheuristics in its binary version. The contribution of the K-nearest neighbors perturbation operator to the final results is systematically analyzed. Particle Swarm Optimization and Cuckoo Search are used as metaheuristic techniques. To verify the results, the well-known multidimensional knapsack problem is tackled. A computational comparison is made with the state-of-the-art of metaheuristic techniques that use general mechanisms of binarization. The results show that our improved framework produces consistently better results. In this sense, the contribution of the operator which uses the K-nearest neighbors technique is investigated finding that this operator contributes significantly to the quality of the results.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 9/2020

International Journal of Machine Learning and Cybernetics 9/2020 Go to the issue