Skip to main content
Top

2025 | OriginalPaper | Chapter

Enhancing LLMs Contextual Knowledge with Ontologies for Personalised Food Recommendation

Authors : Ada Bagozi, Devis Bianchini, Michele Melchiori, Anisa Rula

Published in: Web Information Systems Engineering – WISE 2024

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Food recommendation systems help consumers make sustainable and nutritionally complete choices, promoting healthy eating habits and addressing the growing interest in food sustainability and waste reduction. Large Language Models (LLMs), such as ChatGPT, are increasingly used for food recommendations due to their natural language processing capabilities. However, providing personalised and contextually relevant suggestions remains challenging because of the lack of a robust conceptualisation of healthy and sustainable food aligned with users’ dietary and lifestyle preferences. Ontologies can address this by offering a structured and semantically rich framework for organising information. In this paper, we propose a modular ontology to enhance the contextual knowledge of LLMs, enabling them to deliver personalised, contextually relevant food recommendations. The ontology’s modules are based on competency questions derived from a research project focused on sustainable and healthy food recommendations. To evaluate the effectiveness of this approach, we conducted experiments where ChatGPT-4 answered these competency questions with and without ontology integration. The answers were then assessed in a user study. Preliminary experimental results indicate significant improvements in the quality and relevance of recommendations when the ontology is employed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Allemang, D., Sequeda, J.: Increasing the LLM accuracy for question answering: ontologies to the rescue! CoRR (2024) Allemang, D., Sequeda, J.: Increasing the LLM accuracy for question answering: ontologies to the rescue! CoRR (2024)
2.
go back to reference Botos, S., Tóth, M., Szilágyi, R.: Improving food consciousness - opportunities of smartphone apps to access food information. J. Agric. Inform 12(1), 1–12 (2022) Botos, S., Tóth, M., Szilágyi, R.: Improving food consciousness - opportunities of smartphone apps to access food information. J. Agric. Inform 12(1), 1–12 (2022)
3.
go back to reference Brena-Melendez, A., Garcia-Amezquita, L.E., Liceaga, A., Pascacio-Villafán, C., Tejada-Ortigoza, V.: Novel food ingredients: evaluation of commercial processing conditions on nutritional and technological properties of edible cricket (acheta domesticus) and its derived parts. Innov. Food Sci. Emerg, Technol 92, 103589 (2024) Brena-Melendez, A., Garcia-Amezquita, L.E., Liceaga, A., Pascacio-Villafán, C., Tejada-Ortigoza, V.: Novel food ingredients: evaluation of commercial processing conditions on nutritional and technological properties of edible cricket (acheta domesticus) and its derived parts. Innov. Food Sci. Emerg, Technol 92, 103589 (2024)
4.
go back to reference Deldjoo, Y., et al.: A review of modern fashion recommender systems. ACM Comput. Surv. (2024) Deldjoo, Y., et al.: A review of modern fashion recommender systems. ACM Comput. Surv. (2024)
5.
go back to reference Dooley, D.M., et al.: FoodOn: a harmonized food ontology to increase global food traceability, quality control and data integration. npj Sci. Food 2(1), 23 (2018) Dooley, D.M., et al.: FoodOn: a harmonized food ontology to increase global food traceability, quality control and data integration. npj Sci. Food 2(1), 23 (2018)
7.
go back to reference Hermanussen, H., Loy, J.P.: Household food waste: a meta-analysis. Environ. Challenges 14, 100809 (2024)CrossRef Hermanussen, H., Loy, J.P.: Household food waste: a meta-analysis. Environ. Challenges 14, 100809 (2024)CrossRef
8.
go back to reference Hoseini, S., Theissen-Lipp, J., Quix, C.: A survey on semantic data management as intersection of ontology-based data access, semantic modeling and data lakes. JWS 81, 100819 (2024) Hoseini, S., Theissen-Lipp, J., Quix, C.: A survey on semantic data management as intersection of ontology-based data access, semantic modeling and data lakes. JWS 81, 100819 (2024)
9.
go back to reference Hou, Y., et al.: Large language models are zero-shot rankers for recommender systems. In: Advances in Information Retrieval, pp. 364–381 (2024) Hou, Y., et al.: Large language models are zero-shot rankers for recommender systems. In: Advances in Information Retrieval, pp. 364–381 (2024)
10.
go back to reference Konys, A.: An ontology-based knowledge modelling for a sustainability assessment domain. Sustainability 10(2), 300 (2018)CrossRef Konys, A.: An ontology-based knowledge modelling for a sustainability assessment domain. Sustainability 10(2), 300 (2018)CrossRef
11.
go back to reference Pan, S., Luo, L., Wang, Y., Chen, C., Wang, J., Wu, X.: Unifying large language models and knowledge graphs: a roadmap. IEEE Trans. Knowl. Data Eng. 36(7), 3580–3599 (2024) Pan, S., Luo, L., Wang, Y., Chen, C., Wang, J., Wu, X.: Unifying large language models and knowledge graphs: a roadmap. IEEE Trans. Knowl. Data Eng. 36(7), 3580–3599 (2024)
12.
go back to reference Sequeda, J., Allemang, D., Jacob, B.: A benchmark to understand the role of knowledge graphs on large language model’s accuracy for question answering on enterprise SQL databases. In: Workshop GRADES and (NDA). ACM (2024) Sequeda, J., Allemang, D., Jacob, B.: A benchmark to understand the role of knowledge graphs on large language model’s accuracy for question answering on enterprise SQL databases. In: Workshop GRADES and (NDA). ACM (2024)
13.
go back to reference Simsek-Senel, G., Rijgersberg, H., Öztürk, B., Weits, J., Fensel, A.: I-know-foo: interlinking and creating knowledge graphs for near-zero co2 emission diets and sustainable food production. In: AI, Data, and Digitalization, pp. 106–119 (2024) Simsek-Senel, G., Rijgersberg, H., Öztürk, B., Weits, J., Fensel, A.: I-know-foo: interlinking and creating knowledge graphs for near-zero co2 emission diets and sustainable food production. In: AI, Data, and Digitalization, pp. 106–119 (2024)
14.
go back to reference Weber, M., Buche, P., Ibanescu, L., Dervaux, S.: Po2/transformon: a new domain ontology for integrating food, feed, bio-products and waste in a circular and sustainable approach. CEUR Workshop Proc. 3637, 1–12 (2023) Weber, M., Buche, P., Ibanescu, L., Dervaux, S.: Po2/transformon: a new domain ontology for integrating food, feed, bio-products and waste in a circular and sustainable approach. CEUR Workshop Proc. 3637, 1–12 (2023)
Metadata
Title
Enhancing LLMs Contextual Knowledge with Ontologies for Personalised Food Recommendation
Authors
Ada Bagozi
Devis Bianchini
Michele Melchiori
Anisa Rula
Copyright Year
2025
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-96-0573-6_20

Premium Partner