Skip to main content
Top

2024 | OriginalPaper | Chapter

Enhancing Time Series Forecasting in Foreign Exchange Markets with a Hybrid Model Based on Histogram-Valued Data

Authors : Wilawan Srichaikul, Somsak Chanaim, Worrawat Saijai, Woraphon Yamaka

Published in: Applications of Optimal Transport to Economics and Related Topics

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This study explores exchange rate forecasting using a hybrid model with equal weight, alongside traditional models like ARIMA(p, d, q), ETS(A, N, N), TBATS, and the NNAR(p, k) model. We evaluate and compare their performance using RMSE, MAE, and MAPE measures on data spanning from January 2018 to July 2023. Our findings highlight the hybrid model with equal weight as an effective choice for USD/JPY and USD/CAD exchange rate prediction, outperforming other models in terms of lower RMSE, MAE, and MAPE values. In contrast, the ARIMA(p, d, q) model excels in forecasting EUR/USD and USD/CHF, aligning closely with true values. The hybrid model, while not always the best, consistently offers competitive performance, providing a versatile tool for Forex rate prediction. Future research can extend this hybrid model to forecast other financial instruments, including stock indices, digital assets, or commodity markets, offering valuable insights for investors and policymakers.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference De Livera, A.M., Hyndman, R.J., Snyder, R.D.: Forecasting time series with complex seasonal patterns using exponential smoothing. J. Am. Stat. Assoc. 106(496), 1513–1527 (2011)CrossRef De Livera, A.M., Hyndman, R.J., Snyder, R.D.: Forecasting time series with complex seasonal patterns using exponential smoothing. J. Am. Stat. Assoc. 106(496), 1513–1527 (2011)CrossRef
2.
go back to reference Dias, S., Brito, P.: Distribution and symmetric distribution regression model for histogram-valued variables (2013). arXiv:1303.6199 Dias, S., Brito, P.: Distribution and symmetric distribution regression model for histogram-valued variables (2013). arXiv:​1303.​6199
3.
go back to reference Erem, E.: Forecasting exchange rates using artificial neural networks. J. Financ. Econ. 11(1), 58–67 (2023) Erem, E.: Forecasting exchange rates using artificial neural networks. J. Financ. Econ. 11(1), 58–67 (2023)
4.
go back to reference Galeshchuk, S., Mukherjee, S.: Deep networks for predicting direction of change in foreign exchange rates. Intell. Syst. Account., Financ. Manag. 24(4), 100–110 (2017)CrossRef Galeshchuk, S., Mukherjee, S.: Deep networks for predicting direction of change in foreign exchange rates. Intell. Syst. Account., Financ. Manag. 24(4), 100–110 (2017)CrossRef
5.
go back to reference Held, L., Ott, M.: On p-values and Bayes factors. Annu. Rev. Stat. Its Appl. 5, 393–419 (2018)CrossRef Held, L., Ott, M.: On p-values and Bayes factors. Annu. Rev. Stat. Its Appl. 5, 393–419 (2018)CrossRef
6.
go back to reference Hyndman, R.J., Khandakar, Y.: Automatic time series forecasting: the forecast package for R. J. Stat. Softw. 27, 1–22 (2008)CrossRef Hyndman, R.J., Khandakar, Y.: Automatic time series forecasting: the forecast package for R. J. Stat. Softw. 27, 1–22 (2008)CrossRef
7.
go back to reference Jung, G., Choi, S.Y.: Forecasting foreign exchange volatility using deep learning autoencoder-LSTM techniques. Complexity 2021, 1–16 (2021)CrossRef Jung, G., Choi, S.Y.: Forecasting foreign exchange volatility using deep learning autoencoder-LSTM techniques. Complexity 2021, 1–16 (2021)CrossRef
8.
go back to reference Liao, R., Boonyakunakorn, P., Harnpornchai, N., Sriboonchitta, S.: Forecasting the exchange rate for USD to RMB using RNN and SVM. J. Phys.: Conf. Ser. 1616(1), 012050 (2020). IOP Publishing Liao, R., Boonyakunakorn, P., Harnpornchai, N., Sriboonchitta, S.: Forecasting the exchange rate for USD to RMB using RNN and SVM. J. Phys.: Conf. Ser. 1616(1), 012050 (2020). IOP Publishing
9.
go back to reference Maneejuk, P., Srichaikul, W.: Forecasting foreign exchange markets: further evidence using machine learning models. Soft Comput. 25(12), 7887–7898 (2021)CrossRef Maneejuk, P., Srichaikul, W.: Forecasting foreign exchange markets: further evidence using machine learning models. Soft Comput. 25(12), 7887–7898 (2021)CrossRef
10.
go back to reference Menkhoff, L., Taylor, M.P.: The obstinate passion of foreign exchange professionals: technical analysis. J. Econ. Lit. 45(4), 936–972 (2007)CrossRef Menkhoff, L., Taylor, M.P.: The obstinate passion of foreign exchange professionals: technical analysis. J. Econ. Lit. 45(4), 936–972 (2007)CrossRef
11.
go back to reference Nanayakkara, K.A.D.S.A., Chandrasekara, N.V., Jayasundara, D.D.M.: Forecasting exchange rates using time series and neural network approaches. European Int. J. Sci. Technol. 3(2), 65–73 (2014) Nanayakkara, K.A.D.S.A., Chandrasekara, N.V., Jayasundara, D.D.M.: Forecasting exchange rates using time series and neural network approaches. European Int. J. Sci. Technol. 3(2), 65–73 (2014)
12.
go back to reference Ngan, T.M.U.: Forecasting foreign exchange rate by using ARIMA model: a case of VND/USD exchange rate. Methodology 2014, 2015 (2013) Ngan, T.M.U.: Forecasting foreign exchange rate by using ARIMA model: a case of VND/USD exchange rate. Methodology 2014, 2015 (2013)
13.
go back to reference Parot, A., Michell, K., Kristjanpoller, W.D.: Using Artificial Neural Networks to forecast Exchange Rate, including VAR-VECM residual analysis and prediction linear combination. Intell. Syst. Account., Financ. Manag. 26(1), 3–15 (2019)CrossRef Parot, A., Michell, K., Kristjanpoller, W.D.: Using Artificial Neural Networks to forecast Exchange Rate, including VAR-VECM residual analysis and prediction linear combination. Intell. Syst. Account., Financ. Manag. 26(1), 3–15 (2019)CrossRef
14.
go back to reference Pong, S., Shackleton, M.B., Taylor, S.J., Xu, X.: Forecasting currency volatility: a comparison of implied volatilities and AR (FI) MA models. J. Bank. Financ. 28(10), 2541–2563 (2004)CrossRef Pong, S., Shackleton, M.B., Taylor, S.J., Xu, X.: Forecasting currency volatility: a comparison of implied volatilities and AR (FI) MA models. J. Bank. Financ. 28(10), 2541–2563 (2004)CrossRef
15.
go back to reference Pradhan, R.P., Kumar, R.: Forecasting exchange rate in India: an application of artificial neural network model. J. Math. Res. 2(4), 111 (2010)CrossRef Pradhan, R.P., Kumar, R.: Forecasting exchange rate in India: an application of artificial neural network model. J. Math. Res. 2(4), 111 (2010)CrossRef
16.
go back to reference Rout, M., Majhi, B., Majhi, R., Panda, G.: Forecasting of currency exchange rates using an adaptive ARMA model with differential evolution based training. J. King Saud Univ.-Comput. Inf. Sci. 26(1), 7–18 (2014) Rout, M., Majhi, B., Majhi, R., Panda, G.: Forecasting of currency exchange rates using an adaptive ARMA model with differential evolution based training. J. King Saud Univ.-Comput. Inf. Sci. 26(1), 7–18 (2014)
18.
go back to reference Shen, F., Chao, J., Zhao, J.: Forecasting exchange rate using deep belief networks and conjugate gradient method. Neurocomputing 167, 243–253 (2015)CrossRef Shen, F., Chao, J., Zhao, J.: Forecasting exchange rate using deep belief networks and conjugate gradient method. Neurocomputing 167, 243–253 (2015)CrossRef
19.
go back to reference Tlegenova, D.: Forecasting exchange rates using time series analysis: the sample of the currency of Kazakhstan (2015). arXiv:1508.07534 Tlegenova, D.: Forecasting exchange rates using time series analysis: the sample of the currency of Kazakhstan (2015). arXiv:​1508.​07534
Metadata
Title
Enhancing Time Series Forecasting in Foreign Exchange Markets with a Hybrid Model Based on Histogram-Valued Data
Authors
Wilawan Srichaikul
Somsak Chanaim
Worrawat Saijai
Woraphon Yamaka
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-67770-0_35