Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

24-04-2020 | ORIGINAL ARTICLE | Issue 9-10/2020

The International Journal of Advanced Manufacturing Technology 9-10/2020

Ensemble transfer learning for refining stability predictions in milling using experimental stability states

Journal:
The International Journal of Advanced Manufacturing Technology > Issue 9-10/2020
Authors:
M. Postel, B. Bugdayci, K. Wegener
Important notes

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

A new approach for updating model-based stability chart predictions in milling based on experimental data is presented. The approach utilizes Deep Neural Networks (DNNs), which are pre-trained with simulated data that is generated by predicting machine dynamics through receptance coupling and evaluating stability through an analytical stability model. The weights in the DNN are fine-tuned by re-training the networks with a small experimental dataset containing only a few dozen samples. Target is to match network predictions with the experimentally observed stability states acquired under different cutting conditions. The presented approach avoids measurement or model-based estimation of cutting force coefficients as well as the measurement of tooltip dynamics or extensive model parameter identification, making it an attractive approach for industrial applications. In an experimental validation, where stability charts for various engagement conditions and different tool clamping lengths are predicted, a good match between predictions and experimental stability limits is achieved. It is shown that an ensemble learning method, where predictions of multiple networks are combined, can improve prediction accuracy. Furthermore, it is demonstrated that the new approach requires approximately five times fewer experimental samples than previously proposed model-free machine learning approaches to reach the same prediction accuracy on a test set.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 9-10/2020

The International Journal of Advanced Manufacturing Technology 9-10/2020 Go to the issue

Premium Partners

    Image Credits