Skip to main content
Top
Published in: Quantum Information Processing 4/2021

01-04-2021

Entanglement-based quantum key distribution with untrusted third party

Authors: Chang-Yue Zhang, Zhu-Jun Zheng

Published in: Quantum Information Processing | Issue 4/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In quantum key distribution, it is important to ensure the secure key rate and the distribution distance. To increasing transmission distance, we propose an entanglement-based protocol relying on two Bell states. Combining the idea of remote state preparation, the protocol can double the communication distance without introducing more security loopholes related to measurement device, and maintain the key generation rate consistent with the BBM92 protocol via untrusted third party. Based on that, we investigate key rate of the protocol when transmitted qubits are subjected to four noises. The result shows that our protocol can tolerate more amplitude damping noise than ES−BBM92 protocol. In addition, we found that if noise is unavoidable and the noise parameter exceeds a certain value, in some noisy environments, it is best to subject qubit to more noise to increase the secret key generation rate. Furthermore, we calculate secret key rate under both practical experimental condition and noisy environment.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? [J]. Phys. Rev. 47(10), 696–702 (1935)MATHCrossRef Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? [J]. Phys. Rev. 47(10), 696–702 (1935)MATHCrossRef
2.
go back to reference Schrödinger, E.: Die gegenwärtige situation in der quantenmechanik. Naturwissenschaften 23(1), 807–812 (1935)ADSMATHCrossRef Schrödinger, E.: Die gegenwärtige situation in der quantenmechanik. Naturwissenschaften 23(1), 807–812 (1935)ADSMATHCrossRef
3.
go back to reference Mattle, K., Weinfurter, H., Kwiat, P.G., et al.: Dense coding in experimental quantum communication[J]. Phys. Rev. Lett. 76(25), 4656 (1996)ADSCrossRef Mattle, K., Weinfurter, H., Kwiat, P.G., et al.: Dense coding in experimental quantum communication[J]. Phys. Rev. Lett. 76(25), 4656 (1996)ADSCrossRef
4.
go back to reference Lou, X., Long, H., Tang, W., et al.: Continuous-variable arbitrated quantum signature based on dense coding and teleportation[J]. IEEE Access 7, 85719–85726 (2019)CrossRef Lou, X., Long, H., Tang, W., et al.: Continuous-variable arbitrated quantum signature based on dense coding and teleportation[J]. IEEE Access 7, 85719–85726 (2019)CrossRef
6.
go back to reference Bennett, C.H., Brassard, G., Crdpeau, C., et al.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phy. Rev. Lett. 70(13), 1895–1899 (1993)ADSMathSciNetMATHCrossRef Bennett, C.H., Brassard, G., Crdpeau, C., et al.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phy. Rev. Lett. 70(13), 1895–1899 (1993)ADSMathSciNetMATHCrossRef
7.
go back to reference Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement[J]. Phys. Rev. A 58(6), 4394–4400 (2002)ADSMathSciNetCrossRef Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement[J]. Phys. Rev. A 58(6), 4394–4400 (2002)ADSMathSciNetCrossRef
8.
go back to reference Jun-Ichirou, K., Gen, K., Kengo, M.: Quantum teleportation in vacuum only via Unruh-DeWitt detectors[J]. Phys. Rev. A 97(6), 062338 (2018)CrossRef Jun-Ichirou, K., Gen, K., Kengo, M.: Quantum teleportation in vacuum only via Unruh-DeWitt detectors[J]. Phys. Rev. A 97(6), 062338 (2018)CrossRef
9.
go back to reference Barasinski, A., Cernoch, A., Lemr, K.: Demonstration of controlled quantum teleportation for discrete variables on linear optical devices[J]. Phys. Rev. Lett. 122(17), 1–6 (2019)MathSciNetCrossRef Barasinski, A., Cernoch, A., Lemr, K.: Demonstration of controlled quantum teleportation for discrete variables on linear optical devices[J]. Phys. Rev. Lett. 122(17), 1–6 (2019)MathSciNetCrossRef
10.
go back to reference Zhou, R.G., Xu, R., Lan, H.: Bidirectional quantum teleportation by using six-qubit cluster state[J]. IEEE Access 7, 44269–44276 (2019)CrossRef Zhou, R.G., Xu, R., Lan, H.: Bidirectional quantum teleportation by using six-qubit cluster state[J]. IEEE Access 7, 44269–44276 (2019)CrossRef
12.
go back to reference Yan, F.L., Gao, T.: Quantum secret sharing between multiparty and multiparty without entanglement[J]. Phys. Rev. A 72(1), 1523 (2005)CrossRef Yan, F.L., Gao, T.: Quantum secret sharing between multiparty and multiparty without entanglement[J]. Phys. Rev. A 72(1), 1523 (2005)CrossRef
13.
go back to reference Gao, G.: Cryptanalysis and improvement of dynamic quantum secret sharing protocol based on two-particle transform of Bell states[J]. Quantum Inform. Process. 18(6), 186 (2019)ADSCrossRef Gao, G.: Cryptanalysis and improvement of dynamic quantum secret sharing protocol based on two-particle transform of Bell states[J]. Quantum Inform. Process. 18(6), 186 (2019)ADSCrossRef
15.
go back to reference Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity[J]. Phys. Rev. A 62(1), 012313 (2000)ADSCrossRef Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity[J]. Phys. Rev. A 62(1), 012313 (2000)ADSCrossRef
16.
go back to reference Chen, X.B., Ma, S.Y., Su, Y., et al.: Controlled remote state preparation of arbitrary two and three qubit states via the Brown state[J]. Quantum Inform. Process. 11(6), 1653–1667 (2012)ADSMathSciNetMATHCrossRef Chen, X.B., Ma, S.Y., Su, Y., et al.: Controlled remote state preparation of arbitrary two and three qubit states via the Brown state[J]. Quantum Inform. Process. 11(6), 1653–1667 (2012)ADSMathSciNetMATHCrossRef
17.
18.
19.
go back to reference Bennett, C.H., Divincenzo, D.P., Shor, P.W., et al.: Remote state preparation[J]. Phys. Rev. Lett. 87(7), 077902 (2001)ADSCrossRef Bennett, C.H., Divincenzo, D.P., Shor, P.W., et al.: Remote state preparation[J]. Phys. Rev. Lett. 87(7), 077902 (2001)ADSCrossRef
20.
go back to reference Du, Z., Li, X.: Deterministic joint remote state preparation of four-qubit cluster type with tripartite involvement[J]. Quantum Inform. Process. 19(1), 1–11 (2020)ADSMathSciNetCrossRef Du, Z., Li, X.: Deterministic joint remote state preparation of four-qubit cluster type with tripartite involvement[J]. Quantum Inform. Process. 19(1), 1–11 (2020)ADSMathSciNetCrossRef
21.
go back to reference Qian, Y.J., Xue, S.B., Jiang, M.: Deterministic remote preparation of arbitrary single-qubit state via one intermediate node in noisy environment[J]. Phys. Lett. A 384(10), 126204 (2019)MATHCrossRef Qian, Y.J., Xue, S.B., Jiang, M.: Deterministic remote preparation of arbitrary single-qubit state via one intermediate node in noisy environment[J]. Phys. Lett. A 384(10), 126204 (2019)MATHCrossRef
22.
go back to reference Choudhury, B.S., Samanta, S.: An optional remote state preparation protocol for a four-qubit entangled state[J]. Quantum Inform. Process. 18(4), 118 (2019)ADSMATHCrossRef Choudhury, B.S., Samanta, S.: An optional remote state preparation protocol for a four-qubit entangled state[J]. Quantum Inform. Process. 18(4), 118 (2019)ADSMATHCrossRef
23.
go back to reference Bennett, C.H., Brassard, G.: Public key distribution and coin tossing[C]. Presented at the (1984) Bennett, C.H., Brassard, G.: Public key distribution and coin tossing[C]. Presented at the (1984)
24.
go back to reference Bruss, D.: Optimal eavesdropping in quantum cryptography with six states[J]. Phys. Rev. Lett. 81(14), 3018–3021 (1998)ADSCrossRef Bruss, D.: Optimal eavesdropping in quantum cryptography with six states[J]. Phys. Rev. Lett. 81(14), 3018–3021 (1998)ADSCrossRef
25.
go back to reference Tomita, A.: Implementation security certification of decoy-BB84 quantum key distribution systems[J]. Adv. Quantum Technol. 2(5), 1900005 (2019)CrossRef Tomita, A.: Implementation security certification of decoy-BB84 quantum key distribution systems[J]. Adv. Quantum Technol. 2(5), 1900005 (2019)CrossRef
26.
go back to reference Acín, A., Brunner, N., Gisin, N., et al.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98(23), 230501 (2001)CrossRef Acín, A., Brunner, N., Gisin, N., et al.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98(23), 230501 (2001)CrossRef
27.
go back to reference Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution[J]. Phys. Rev. Lett. 108(13), 130503 (2011)CrossRef Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution[J]. Phys. Rev. Lett. 108(13), 130503 (2011)CrossRef
28.
go back to reference Lucamarini, M., Yuan, Z.L., Dynes, J.F., et al.: Overcoming the ratedistance limit of quantum key distribution without quantum repeaters[J]. Nature 557(7705), 400–403 (2018)ADSCrossRef Lucamarini, M., Yuan, Z.L., Dynes, J.F., et al.: Overcoming the ratedistance limit of quantum key distribution without quantum repeaters[J]. Nature 557(7705), 400–403 (2018)ADSCrossRef
29.
go back to reference Wang, X.B., Yu, Z.W., Hu, X.L.: Twin-field quantum key distribution with large misalignment error[J]. Phys. Rev. A 98(6), 0623623 (2018)CrossRef Wang, X.B., Yu, Z.W., Hu, X.L.: Twin-field quantum key distribution with large misalignment error[J]. Phys. Rev. A 98(6), 0623623 (2018)CrossRef
30.
go back to reference Ma, X.F., Zeng, P., Zhou, H.Y.: Phase-matching quantum key distribution[J]. Phys. Rev. X 8(3), 031043 (2018) Ma, X.F., Zeng, P., Zhou, H.Y.: Phase-matching quantum key distribution[J]. Phys. Rev. X 8(3), 031043 (2018)
31.
go back to reference Waks, E., Zeevi, A., Yamamoto, Y.: Security of quantum key distribution with entangled photons against individual attacks[J]. Phys. Rev. A 65(5), 52310 (2002)ADSCrossRef Waks, E., Zeevi, A., Yamamoto, Y.: Security of quantum key distribution with entangled photons against individual attacks[J]. Phys. Rev. A 65(5), 52310 (2002)ADSCrossRef
32.
go back to reference Scherer, A., Sanders, B.C., Tittel, W.: Long-distance practical quantum key distribution by entanglement swapping[J]. Opt. Express 19(4), 3004 (2011)ADSCrossRef Scherer, A., Sanders, B.C., Tittel, W.: Long-distance practical quantum key distribution by entanglement swapping[J]. Opt. Express 19(4), 3004 (2011)ADSCrossRef
33.
go back to reference Żukowski, M., Zeilinger, A., Horne, M.A., Ekert, K.: Event-ready-detectors Bell experiment via entanglement swapping[J]. Phys. Rev. Lett. 71(26), 4287–4290 (1993)ADSCrossRef Żukowski, M., Zeilinger, A., Horne, M.A., Ekert, K.: Event-ready-detectors Bell experiment via entanglement swapping[J]. Phys. Rev. Lett. 71(26), 4287–4290 (1993)ADSCrossRef
35.
go back to reference El-Orany, F.A.A., Wahiddin, M.R.B., Mat-Nor, M., et al.: Quantum key distribution in terms of the Greenberger-Horne-Zeilinger state: multi-key generation[J]. Laser Phys. 20(5), 1210–1214 (2010)ADSCrossRef El-Orany, F.A.A., Wahiddin, M.R.B., Mat-Nor, M., et al.: Quantum key distribution in terms of the Greenberger-Horne-Zeilinger state: multi-key generation[J]. Laser Phys. 20(5), 1210–1214 (2010)ADSCrossRef
36.
go back to reference Song, D.: Secure key distribution by swapping quantum entanglement[J]. Phys. Rev. A 69(3), 034301 (2004)ADSCrossRef Song, D.: Secure key distribution by swapping quantum entanglement[J]. Phys. Rev. A 69(3), 034301 (2004)ADSCrossRef
37.
go back to reference Hwang, T., Hwang, C.C., Tsai, C.W.: Quantum key distribution protocol using dense coding of three-qubit W state[J]. Eur. Phys. J. D 61(3), 785–790 (2011)ADSCrossRef Hwang, T., Hwang, C.C., Tsai, C.W.: Quantum key distribution protocol using dense coding of three-qubit W state[J]. Eur. Phys. J. D 61(3), 785–790 (2011)ADSCrossRef
38.
go back to reference Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme[J]. Phys. Rev. A 65(3), 032302 (2002)ADSCrossRef Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme[J]. Phys. Rev. A 65(3), 032302 (2002)ADSCrossRef
39.
go back to reference Abushgra, A. A., Elleithy, K. M.: QKD protocol based on entangled states by trusted third party[C]// Systems, Applications Technology Conference. IEEE (2017) Abushgra, A. A., Elleithy, K. M.: QKD protocol based on entangled states by trusted third party[C]// Systems, Applications Technology Conference. IEEE (2017)
40.
go back to reference Elliott, C., Colvin, A., Pearson, D., et al.: Current status of the DARPA Quantum Network[J]. Proceedings of SPIE - The International Society for Optical Engineering 5815(1), 138–149 (2005) Elliott, C., Colvin, A., Pearson, D., et al.: Current status of the DARPA Quantum Network[J]. Proceedings of SPIE - The International Society for Optical Engineering 5815(1), 138–149 (2005)
41.
go back to reference Peev, M., Pacher, C., Alléaume, R., et al.: The SECOQC quantum key distribution network in Vienna[J]. New J. Phys. 11, 075001 (2009)ADSCrossRef Peev, M., Pacher, C., Alléaume, R., et al.: The SECOQC quantum key distribution network in Vienna[J]. New J. Phys. 11, 075001 (2009)ADSCrossRef
42.
go back to reference Sasaki, M., Fujiwara, M., Ishizuka, H., et al.: Field test of quantum key distribution in the Tokyo QKD Network[J]. Opt. Express 19, 103887–10409 (2011)CrossRef Sasaki, M., Fujiwara, M., Ishizuka, H., et al.: Field test of quantum key distribution in the Tokyo QKD Network[J]. Opt. Express 19, 103887–10409 (2011)CrossRef
43.
go back to reference Yin, J., Cao, Y., Li, Y.H., et al.: Satellite\(-\)based entanglement distribution over 1200 kilometers. Science 356(6343), 1140–1144 (2017)CrossRef Yin, J., Cao, Y., Li, Y.H., et al.: Satellite\(-\)based entanglement distribution over 1200 kilometers. Science 356(6343), 1140–1144 (2017)CrossRef
44.
go back to reference Calsamiglia, J., Lutkenhaus, N.: Maximum efficiency of a linear-optical Bell-state analyzer[J]. Appl. Phys. B 72(1), 67–71 (2001)ADSCrossRef Calsamiglia, J., Lutkenhaus, N.: Maximum efficiency of a linear-optical Bell-state analyzer[J]. Appl. Phys. B 72(1), 67–71 (2001)ADSCrossRef
Metadata
Title
Entanglement-based quantum key distribution with untrusted third party
Authors
Chang-Yue Zhang
Zhu-Jun Zheng
Publication date
01-04-2021
Publisher
Springer US
Published in
Quantum Information Processing / Issue 4/2021
Print ISSN: 1570-0755
Electronic ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-021-03080-6

Other articles of this Issue 4/2021

Quantum Information Processing 4/2021 Go to the issue