Skip to main content
Top

2020 | OriginalPaper | Chapter

3. Enterprise IoT Modeling: Supervised, Unsupervised, and Reinforcement Learning

Authors : Rajesh Kumar Dhanaraj, K. Rajkumar, U. Hariharan

Published in: Business Intelligence for Enterprise Internet of Things

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The Internet of Things (IoT)—the internetworking of physical devices—has been a significant advancement in recent decades and has been the catalyst for several other innovations. New Industrial Internet of Things (IIoT) platforms aim to solve the most complex challenge of manufacturers: consolidating all production systems into a single data model. They are used in smart cities, security and emergencies, environmental applications, energy, healthcare, logistics, industrial control, home automation, agriculture, and animal farming. These objects/devices/appliances can generate, collect, and exchange data without human-to-human or human-to-computer interactions. The IIoT is creating an explosion in structured and unstructured data from a growing army of sensors capable of registering locations, voices, faces, audio, temperature, sentiment, health, and others. Billions of IoT devices are interconnected and a huge volume of data is generated. Every device features automation to assist people in the planning, management, and decision-making of their day-to-day activities. Machine learning (ML) techniques are applied to further enhance the intelligence and capabilities of an application. Many researchers are interested in producing advanced IoT technology, combining ML and IoT Techniques. Through ML, IIoT devices learn to perform tasks such as predication, pattern recognition, classification, and clustering. To provide for a learning process, IoT devices are trained using various algorithms in ML and statistical models to analyze sample data. The various fields of data sets (structured and unstructured data) are characterized by measuring functional parameters. Later, ML algorithms are applied to the data set to find features, provide useful output, identify patterns or make decisions based on the data set, draw inferences from real-time data streams, make their results available to analysts, and embed their results directly in business processes. In ML, the real-time problem is classified by classification, clustering, regression models, and association rules. Based on the learning style, ML algorithms can be categorized as supervised, unsupervised, semi-supervised, and reinforcement learning.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kumar, D. R., Krishna, T. A., & Wahi, A. (2018). Health monitoring framework for in time recognition of pulmonary embolism using internet of things. Journal of Computational and Theoretical Nanoscience, 15(5), 1598–1602.CrossRef Kumar, D. R., Krishna, T. A., & Wahi, A. (2018). Health monitoring framework for in time recognition of pulmonary embolism using internet of things. Journal of Computational and Theoretical Nanoscience, 15(5), 1598–1602.CrossRef
2.
go back to reference Anandhalli, M., & Baligar, V. P. (2017). A novel approach in real-time vehicle detection and tracking using raspberry pi. Alexandria Engineering Journal, 57(3), 1597–1607.CrossRef Anandhalli, M., & Baligar, V. P. (2017). A novel approach in real-time vehicle detection and tracking using raspberry pi. Alexandria Engineering Journal, 57(3), 1597–1607.CrossRef
3.
go back to reference Atzori, L., Iera, A., & Morabito, G. (2010). The internet of things: A survey. Computer Networks, 54(15), 2787–2805.CrossRef Atzori, L., Iera, A., & Morabito, G. (2010). The internet of things: A survey. Computer Networks, 54(15), 2787–2805.CrossRef
4.
go back to reference Kamath, G., Agnihotri, P., Valero, M., Sarker, K., & Song, W. -Z. (2016). Pushing analytics to the edge. In GLOBECOM, IEEE, pp 1–6. Kamath, G., Agnihotri, P., Valero, M., Sarker, K., & Song, W. -Z. (2016). Pushing analytics to the edge. In GLOBECOM, IEEE, pp 1–6.
6.
go back to reference Nishiguchi Y, Yano A., Ohtani, T., Matsukura, R., & Kakuta, J. (2018). Iotfault management platform with device virtualization. In 2018 IEEE4th World Forum on Internet of Things (WF-IoT), pp. 257–262. Nishiguchi Y, Yano A., Ohtani, T., Matsukura, R., & Kakuta, J. (2018). Iotfault management platform with device virtualization. In 2018 IEEE4th World Forum on Internet of Things (WF-IoT), pp. 257–262.
7.
go back to reference Qiu, J., Wu, Q., Ding, G., Xu, Y., & Feng, S. (2016). A survey of machine learning for big data processing. EURASIP Journal on Advances in Signal Processing, 2016, 67.CrossRef Qiu, J., Wu, Q., Ding, G., Xu, Y., & Feng, S. (2016). A survey of machine learning for big data processing. EURASIP Journal on Advances in Signal Processing, 2016, 67.CrossRef
8.
go back to reference Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. In The IEEE conference on Computer Vision and Pattern Recognition (CVPR), pp. 779–788. Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. In The IEEE conference on Computer Vision and Pattern Recognition (CVPR), pp. 779–788.
9.
go back to reference Kumar, R. N., Karthick, S., Valarmathi, R. S., & Kumar, D. R. (2018). Design and analysis of multiply and accumulation units using low power adders. Journal of Computational and Theoretical Nanoscience, 15(5), 1712–1718.CrossRef Kumar, R. N., Karthick, S., Valarmathi, R. S., & Kumar, D. R. (2018). Design and analysis of multiply and accumulation units using low power adders. Journal of Computational and Theoretical Nanoscience, 15(5), 1712–1718.CrossRef
10.
go back to reference Anandakumar, H., & Umamaheswari, K. (2017). Supervised machine learning techniques in cognitive radio networks during cooperative spectrum handovers. Cluster Computing, 20(2), 1505–1515.CrossRef Anandakumar, H., & Umamaheswari, K. (2017). Supervised machine learning techniques in cognitive radio networks during cooperative spectrum handovers. Cluster Computing, 20(2), 1505–1515.CrossRef
11.
go back to reference Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., & Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision applications. Computer Vision and Pattern Recognition (cs.CV). Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., & Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision applications. Computer Vision and Pattern Recognition (cs.CV).
12.
go back to reference Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J., & Keutzer, K. (2016). Squeezenet: Alexnet-level accuracy with 50x fewer parameters and <05mbmodel size. arXiv:1602.07360 Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J., & Keutzer, K. (2016). Squeezenet: Alexnet-level accuracy with 50x fewer parameters and <05mbmodel size. arXiv:1602.07360
13.
go back to reference Rajesh Kumar, D., & Shanmugam, A. (2017). A hyper heuristic localization based cloned node detection technique using GSA based simulated annealing in sensor networks. In Cognitive computing for big data systems over IoT, pp. 307–335. Rajesh Kumar, D., & Shanmugam, A. (2017). A hyper heuristic localization based cloned node detection technique using GSA based simulated annealing in sensor networks. In Cognitive computing for big data systems over IoT, pp. 307–335.
14.
go back to reference Bansod, G., Raval, N., & Pisharoty, N. (2015). Implementation of a new light weight encryption design for embedded security. IEEE Transactions on Information Forensics and Security, 10, 142–151.CrossRef Bansod, G., Raval, N., & Pisharoty, N. (2015). Implementation of a new light weight encryption design for embedded security. IEEE Transactions on Information Forensics and Security, 10, 142–151.CrossRef
15.
go back to reference Cecchinel, C., Jimenez, M., Mosser, S., & Riveill, M. (2014). An architecture to support the collection of big data in the internet of things. In: 2014 IEEE World congress on services, IEEE, pp. 442–449. Cecchinel, C., Jimenez, M., Mosser, S., & Riveill, M. (2014). An architecture to support the collection of big data in the internet of things. In: 2014 IEEE World congress on services, IEEE, pp. 442–449.
17.
go back to reference Varghese, B., Wang, N., Barbhuiya, S., Kilpatrick, P., & Nikolopoulos, D. S. (2016, November 18–20). Challenges and opportunities in edge computing. In 2016 IEEE international conference on smart cloud, Smart Cloud 2016, New York. Varghese, B., Wang, N., Barbhuiya, S., Kilpatrick, P., & Nikolopoulos, D. S. (2016, November 18–20). Challenges and opportunities in edge computing. In 2016 IEEE international conference on smart cloud, Smart Cloud 2016, New York.
18.
go back to reference Zhang, D., et al. (2018). Review on the research and practice of deep learning and reinforcement learning in smart grids. CSEE Journal of Power and Energy Systems, 4, 362–370.CrossRef Zhang, D., et al. (2018). Review on the research and practice of deep learning and reinforcement learning in smart grids. CSEE Journal of Power and Energy Systems, 4, 362–370.CrossRef
19.
go back to reference Chen, G., Parada, C., & Heigold, G. (2014). Small-footprint keyword spotting using deep neural networks. In ICASSP, IEEE, pp 4087–4091. Chen, G., Parada, C., & Heigold, G. (2014). Small-footprint keyword spotting using deep neural networks. In ICASSP, IEEE, pp 4087–4091.
20.
go back to reference Doshi, R., Apthorpe, N., & Feamster, N. (2018, May). Machine learning DDos detection for consumer internet of things devices. In 2018 IEEE Security and Privacy Workshops (SPW), pp. 29–35. Doshi, R., Apthorpe, N., & Feamster, N. (2018, May). Machine learning DDos detection for consumer internet of things devices. In 2018 IEEE Security and Privacy Workshops (SPW), pp. 29–35.
21.
go back to reference Dastjerdi, A. V., & Buyya, R. (2016). Fog computing: Helping the internet of things realize its potential. IEEE Computer, 49(8), 112–116.CrossRef Dastjerdi, A. V., & Buyya, R. (2016). Fog computing: Helping the internet of things realize its potential. IEEE Computer, 49(8), 112–116.CrossRef
22.
go back to reference Dhiviya, S., Malathy, S., & Kumar, D. R. (2018). Internet of things (IoT) elements, trends and applications. Journal of Computational and Theoretical Nanoscience, 15(5), 1639–1643.CrossRef Dhiviya, S., Malathy, S., & Kumar, D. R. (2018). Internet of things (IoT) elements, trends and applications. Journal of Computational and Theoretical Nanoscience, 15(5), 1639–1643.CrossRef
24.
go back to reference Ioannis Stellios, Panayiotis Kotzanikolaou, Mihalis Psarakis, Cristina Alcaraz, Javier Lopez, A Survey of IoT-Enabled Cyberattacks: Assessing Attack Paths to Critical Infrastructures and Services. IEEE Communications Surveys & Tutorials 20 (4):3453-3495 Ioannis Stellios, Panayiotis Kotzanikolaou, Mihalis Psarakis, Cristina Alcaraz, Javier Lopez, A Survey of IoT-Enabled Cyberattacks: Assessing Attack Paths to Critical Infrastructures and Services. IEEE Communications Surveys & Tutorials 20 (4):3453-3495
Metadata
Title
Enterprise IoT Modeling: Supervised, Unsupervised, and Reinforcement Learning
Authors
Rajesh Kumar Dhanaraj
K. Rajkumar
U. Hariharan
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-44407-5_3

Premium Partner