Entropy-Based Measure for Influence Maximization in Temporal Networks | springerprofessional.de Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2020 | OriginalPaper | Chapter

Entropy-Based Measure for Influence Maximization in Temporal Networks

Authors : Radosław Michalski, Jarosław Jankowski, Patryk Pazura

Published in: Computational Science – ICCS 2020

Publisher: Springer International Publishing

share
SHARE

Abstract

The challenge of influence maximization in social networks is tackled in many settings and scenarios. However, the most explored variant is looking at how to choose a seed set of a given size, that maximizes the number of activated nodes for selected model of social influence. This has been studied mostly in the area of static networks, yet other kinds of networks, such as multilayer or temporal ones, are also in the scope of recent research. In this work we propose and evaluate the measure based on entropy, that investigates how the neighbourhood of nodes varies over time, and based on that and their activity ranks, the nodes as possible candidates for seeds are selected. This measure applied for temporal networks intends to favor nodes that vary their neighbourhood highly and, thanks to that, are good spreaders for certain influence models. The results demonstrate that for the Independent Cascade Model of social influence the introduced entropy-based metric outperforms typical seed selection heuristics for temporal networks. Moreover, compared to some other heuristics, it is fast to compute, thus can be used for fast-varying temporal networks.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko





Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literature
1.
go back to reference Barabási, A.L., et al.: Network Science. Cambridge University Press, Cambridge (2016) MATH Barabási, A.L., et al.: Network Science. Cambridge University Press, Cambridge (2016) MATH
2.
go back to reference Bhowmick, A.K., Gueuning, M., Delvenne, J.C., Lambiotte, R., Mitra, B.: Temporal sequence of retweets help to detect influential nodes in social networks. IEEE Trans. Comput. Soc. Syst. 6(3), 441–455 (2019) CrossRef Bhowmick, A.K., Gueuning, M., Delvenne, J.C., Lambiotte, R., Mitra, B.: Temporal sequence of retweets help to detect influential nodes in social networks. IEEE Trans. Comput. Soc. Syst. 6(3), 441–455 (2019) CrossRef
3.
go back to reference Chaintreau, A., Hui, P., Crowcroft, J., Diot, C., Gass, R., Scott, J.: Impact of human mobility on opportunistic forwarding algorithms. IEEE Trans. Mob. Comput. 6(6), 606–620 (2007) CrossRef Chaintreau, A., Hui, P., Crowcroft, J., Diot, C., Gass, R., Scott, J.: Impact of human mobility on opportunistic forwarding algorithms. IEEE Trans. Mob. Comput. 6(6), 606–620 (2007) CrossRef
5.
go back to reference Friedkin, N.E., Cook, K.S.: Peer group influence. Soc. Methods Res. 19(1), 122–143 (1990) CrossRef Friedkin, N.E., Cook, K.S.: Peer group influence. Soc. Methods Res. 19(1), 122–143 (1990) CrossRef
6.
go back to reference Friedkin, N.E., Johnsen, E.C.: Social Influence Network Theory: A sociological Examination of Small Group Dynamics, vol. 33. Cambridge University Press, Cambridge (2011) CrossRef Friedkin, N.E., Johnsen, E.C.: Social Influence Network Theory: A sociological Examination of Small Group Dynamics, vol. 33. Cambridge University Press, Cambridge (2011) CrossRef
8.
go back to reference Goyal, A., Bonchi, F., Lakshmanan, L.V.: Learning influence probabilities in social networks. In: Proceedings of the third ACM international conference on Web search and data mining, pp. 241–250 (2010) Goyal, A., Bonchi, F., Lakshmanan, L.V.: Learning influence probabilities in social networks. In: Proceedings of the third ACM international conference on Web search and data mining, pp. 241–250 (2010)
9.
go back to reference Goyal, A., Lu, W., Lakshmanan, L.V.: Celf++: optimizing the greedy algorithm for influence maximization in social networks. In: Proceedings of the 20th international conference companion on World wide web, pp. 47–48. ACM (2011) Goyal, A., Lu, W., Lakshmanan, L.V.: Celf++: optimizing the greedy algorithm for influence maximization in social networks. In: Proceedings of the 20th international conference companion on World wide web, pp. 47–48. ACM (2011)
10.
go back to reference Hinz, O., Skiera, B., Barrot, C., Becker, J.U.: Seeding strategies for viral marketing: an empirical comparison. J. Mark. 75(6), 55–71 (2011) CrossRef Hinz, O., Skiera, B., Barrot, C., Becker, J.U.: Seeding strategies for viral marketing: an empirical comparison. J. Mark. 75(6), 55–71 (2011) CrossRef
11.
go back to reference Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519(3), 97–125 (2012) CrossRef Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519(3), 97–125 (2012) CrossRef
12.
go back to reference Huang, D.W., Yu, Z.G.: Dynamic-sensitive centrality of nodes in temporal networks. Sci. Rep. 7, 41454 (2017) CrossRef Huang, D.W., Yu, Z.G.: Dynamic-sensitive centrality of nodes in temporal networks. Sci. Rep. 7, 41454 (2017) CrossRef
13.
go back to reference Jankowski, J., Michalski, R., Bródka, P.: A multilayer network dataset of interaction and influence spreading in a virtual world. Sci. Data 4, 170144 (2017) CrossRef Jankowski, J., Michalski, R., Bródka, P.: A multilayer network dataset of interaction and influence spreading in a virtual world. Sci. Data 4, 170144 (2017) CrossRef
14.
go back to reference Jankowski, J., Michalski, R., Kazienko, P.: Compensatory seeding in networks with varying avaliability of nodes. In: 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2013, pp. 1242–1249. IEEE (2013) Jankowski, J., Michalski, R., Kazienko, P.: Compensatory seeding in networks with varying avaliability of nodes. In: 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2013, pp. 1242–1249. IEEE (2013)
15.
go back to reference Jankowski, J., et al.: Probing limits of information spread with sequential seeding. Sci. Rep. 8(1), 13996 (2018) CrossRef Jankowski, J., et al.: Probing limits of information spread with sequential seeding. Sci. Rep. 8(1), 13996 (2018) CrossRef
16.
go back to reference Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 137–146 (2003) Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 137–146 (2003)
17.
go back to reference Kitsak, M., et al.: Identification of influential spreaders in complex networks. Nat. Phys. 6(11), 888 (2010) CrossRef Kitsak, M., et al.: Identification of influential spreaders in complex networks. Nat. Phys. 6(11), 888 (2010) CrossRef
18.
go back to reference Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J.P., Moreno, Y., Porter, M.A.: Multilayer networks. J. Complex Netw. 2(3), 203–271 (2014) CrossRef Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J.P., Moreno, Y., Porter, M.A.: Multilayer networks. J. Complex Netw. 2(3), 203–271 (2014) CrossRef
19.
go back to reference Kulisiewicz, M., Kazienko, P., Szymanski, B.K., Michalski, R.: Entropy measures of human communication dynamics. Sci. Rep. 8(1), 1–8 (2018) CrossRef Kulisiewicz, M., Kazienko, P., Szymanski, B.K., Michalski, R.: Entropy measures of human communication dynamics. Sci. Rep. 8(1), 1–8 (2018) CrossRef
20.
go back to reference Michalski, R., Kajdanowicz, T., Bródka, P., Kazienko, P.: Seed selection for spread of influence in social networks: temporal vs static approach. New Gener. Comput. 32(3–4), 213–235 (2014) CrossRef Michalski, R., Kajdanowicz, T., Bródka, P., Kazienko, P.: Seed selection for spread of influence in social networks: temporal vs static approach. New Gener. Comput. 32(3–4), 213–235 (2014) CrossRef
22.
go back to reference Michalski, R., Kazienko, P., Jankowski, J.: Convince a dozen more and succeed-the influence in multi-layered social networks. In: 2013 International Conference on Signal-Image Technology & Internet-Based Systems, pp. 499–505. IEEE (2013) Michalski, R., Kazienko, P., Jankowski, J.: Convince a dozen more and succeed-the influence in multi-layered social networks. In: 2013 International Conference on Signal-Image Technology & Internet-Based Systems, pp. 499–505. IEEE (2013)
24.
go back to reference Nurek, M., Michalski, R.: Combining machine learning and social network analysis to reveal the organizational structures. Appl. Sci. 10(5), 1699 (2020) CrossRef Nurek, M., Michalski, R.: Combining machine learning and social network analysis to reveal the organizational structures. Appl. Sci. 10(5), 1699 (2020) CrossRef
25.
go back to reference Pan, R.K., Saramäki, J.: Path lengths, correlations, and centrality in temporal networks. Phys. Rev. E 84(1), 016105 (2011) CrossRef Pan, R.K., Saramäki, J.: Path lengths, correlations, and centrality in temporal networks. Phys. Rev. E 84(1), 016105 (2011) CrossRef
26.
go back to reference Pfitzner, R., Scholtes, I., Garas, A., Tessone, C.J., Schweitzer, F.: Betweenness preference: quantifying correlations in the topological dynamics of temporal networks. Phys. Rev. Lett. 110(19), 198701 (2013) CrossRef Pfitzner, R., Scholtes, I., Garas, A., Tessone, C.J., Schweitzer, F.: Betweenness preference: quantifying correlations in the topological dynamics of temporal networks. Phys. Rev. Lett. 110(19), 198701 (2013) CrossRef
28.
go back to reference Takaguchi, T., Nakamura, M., Sato, N., Yano, K., Masuda, N.: Predictability of conversation partners. Phys. Rev. X 1(1), 011008 (2011) Takaguchi, T., Nakamura, M., Sato, N., Yano, K., Masuda, N.: Predictability of conversation partners. Phys. Rev. X 1(1), 011008 (2011)
30.
go back to reference Tang, J., Scellato, S., Musolesi, M., Mascolo, C., Latora, V.: Small-world behavior in time-varying graphs. Phys. Rev. E 81(5), 055101 (2010) CrossRef Tang, J., Scellato, S., Musolesi, M., Mascolo, C., Latora, V.: Small-world behavior in time-varying graphs. Phys. Rev. E 81(5), 055101 (2010) CrossRef
31.
go back to reference Taylor, D., Myers, S.A., Clauset, A., Porter, M.A., Mucha, P.J.: Eigenvector-based centrality measures for temporal networks. Multiscale Model. Simul. 15(1), 537–574 (2017) MathSciNetCrossRef Taylor, D., Myers, S.A., Clauset, A., Porter, M.A., Mucha, P.J.: Eigenvector-based centrality measures for temporal networks. Multiscale Model. Simul. 15(1), 537–574 (2017) MathSciNetCrossRef
32.
go back to reference Wang, X., Zhang, X., Zhao, C., Yi, D.: Maximizing the spread of influence via generalized degree discount. PLoS ONE 11(10), e0164393 (2016) CrossRef Wang, X., Zhang, X., Zhao, C., Yi, D.: Maximizing the spread of influence via generalized degree discount. PLoS ONE 11(10), e0164393 (2016) CrossRef
33.
go back to reference Weng, L., Flammini, A., Vespignani, A., Menczer, F.: Competition among memes in a world with limited attention. Sci. Rep. 2, 335 (2012) CrossRef Weng, L., Flammini, A., Vespignani, A., Menczer, F.: Competition among memes in a world with limited attention. Sci. Rep. 2, 335 (2012) CrossRef
34.
go back to reference Weskida, M., Michalski, R.: Evolutionary algorithm for seed selection in social influence process. In: 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM, pp. 1189–1196. IEEE (2016) Weskida, M., Michalski, R.: Evolutionary algorithm for seed selection in social influence process. In: 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM, pp. 1189–1196. IEEE (2016)
35.
go back to reference Weskida, M., Michalski, R.: Finding influentials in social networks using evolutionary algorithm. J. Comput. Sci. 31, 77–85 (2019) MathSciNetCrossRef Weskida, M., Michalski, R.: Finding influentials in social networks using evolutionary algorithm. J. Comput. Sci. 31, 77–85 (2019) MathSciNetCrossRef
36.
go back to reference Zhang, J.X., Chen, D.B., Dong, Q., Zhao, Z.D.: Identifying a set of influential spreaders in complex networks. Sci. Rep. 6, 27823 (2016) CrossRef Zhang, J.X., Chen, D.B., Dong, Q., Zhao, Z.D.: Identifying a set of influential spreaders in complex networks. Sci. Rep. 6, 27823 (2016) CrossRef
37.
go back to reference Zhao, K., Karsai, M., Bianconi, G.: Models, entropy and information of temporal social networks. In: Holme, P., Saramäki, J. (eds.) Temporal Networks. Understanding Complex Systems, pp. 95–117. Springer, Heidelberg (2013) CrossRef Zhao, K., Karsai, M., Bianconi, G.: Models, entropy and information of temporal social networks. In: Holme, P., Saramäki, J. (eds.) Temporal Networks. Understanding Complex Systems, pp. 95–117. Springer, Heidelberg (2013) CrossRef
38.
go back to reference Zhao, Y., Li, S., Jin, F.: Identification of influential nodes in social networks with community structure based on label propagation. Neurocomputing 210, 34–44 (2016) CrossRef Zhao, Y., Li, S., Jin, F.: Identification of influential nodes in social networks with community structure based on label propagation. Neurocomputing 210, 34–44 (2016) CrossRef
39.
go back to reference Zhuang, H., Sun, Y., Tang, J., Zhang, J., Sun, X.: Influence maximization in dynamic social networks. In: 2013 IEEE 13th International Conference on Data Mining, pp. 1313–1318. IEEE (2013) Zhuang, H., Sun, Y., Tang, J., Zhang, J., Sun, X.: Influence maximization in dynamic social networks. In: 2013 IEEE 13th International Conference on Data Mining, pp. 1313–1318. IEEE (2013)
Metadata
Title
Entropy-Based Measure for Influence Maximization in Temporal Networks
Authors
Radosław Michalski
Jarosław Jankowski
Patryk Pazura
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-50423-6_21