Skip to main content
Top

2024 | OriginalPaper | Chapter

Entropy Production Bounds for the Kac Model are Uniform in the Number of Particles

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The chapter delves into the intricate relationship between entropy production and equilibrium convergence in Kac's model, focusing on bounds that are uniform in the number of particles. It introduces the concept of entropy production inequalities and their superiority over spectral gap methods. The HWI inequality is highlighted as a powerful tool for deriving entropy power laws. The main results include entropy power laws for both Kac's process and the Boltzmann equation, demonstrating the utility of these techniques in understanding complex systems. The text also provides a detailed exposition of the Wasserstein distance, Fisher information, and the concept of chaos, making it a valuable resource for researchers in mathematical physics and related fields.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bobylev, A.V., Gamba, I.M.: Boltzmann equations for mixtures of maxwell gases: exact solutions and power like tails. J. Stat. Phys. 124, 497–516 (2006) Bobylev, A.V., Gamba, I.M.: Boltzmann equations for mixtures of maxwell gases: exact solutions and power like tails. J. Stat. Phys. 124, 497–516 (2006)
2.
go back to reference Bobylev, A.V., Cercignani, C.: On the rate of entropy production for the Boltzmann equation. J. Stat. Phys. 94 (3–4), 603–618 (1999) Bobylev, A.V., Cercignani, C.: On the rate of entropy production for the Boltzmann equation. J. Stat. Phys. 94 (3–4), 603–618 (1999)
3.
go back to reference Burdzy, K., Kendall, W.S.: Efficient Markovian couplings: examples and counterexamples. Ann. Appl. Probab. 2, 362–409 (2000) Burdzy, K., Kendall, W.S.: Efficient Markovian couplings: examples and counterexamples. Ann. Appl. Probab. 2, 362–409 (2000)
4.
go back to reference Carlen, E.A., Lieb, E.H., Loss, M.: A sharp analog of young’s inequality on \(S^N\) and related entropy inequalities. J. Geom. Anal. 14 (3), 487–520 (2004) Carlen, E.A., Lieb, E.H., Loss, M.: A sharp analog of young’s inequality on \(S^N\) and related entropy inequalities. J. Geom. Anal. 14 (3), 487–520 (2004)
5.
go back to reference Carlen, E.A., Carvalho, M.C., Loss, M.: Determination of the spectral gap for Kac’s master equation and related stochastic evolution. Acta Mathematica 191 (1), 1–54 (2003) Carlen, E.A., Carvalho, M.C., Loss, M.: Determination of the spectral gap for Kac’s master equation and related stochastic evolution. Acta Mathematica 191 (1), 1–54 (2003)
6.
go back to reference Carlen, E.A., Geronimo, J., Loss, M.: Determination of the spectral gap in the KAC model for physical momentum and energy conserving collisions. SIAM J. Math. Anal. 40 (1), 327–364 (2008) Carlen, E.A., Geronimo, J., Loss, M.: Determination of the spectral gap in the KAC model for physical momentum and energy conserving collisions. SIAM J. Math. Anal. 40 (1), 327–364 (2008)
7.
go back to reference Carlen, E.A., Carvalho, M.C., Le Roux, J., Loss, M., Villani, C.: Entropy and chaos in the KAC model. Kinet. Relat. Model. 3(1), 85–122 (2010) Carlen, E.A., Carvalho, M.C., Le Roux, J., Loss, M., Villani, C.: Entropy and chaos in the KAC model. Kinet. Relat. Model. 3(1), 85–122 (2010)
8.
go back to reference Carlen, E.A., Carvalho, M.C., Loss, M.: Many body aspects of approach to equilibrium. Journes Equations aux derivees partielles, Nantes, 5–9 Juin 2000 Carlen, E.A., Carvalho, M.C., Loss, M.: Many body aspects of approach to equilibrium. Journes Equations aux derivees partielles, Nantes, 5–9 Juin 2000
9.
go back to reference Carlen, E.A., Carvalho, M.C., Loss, M.: Spectral gap for the KAC model with hard sphere collisions. J. Funct. Anal. 266 (3), 1787–1832 (2014) Carlen, E.A., Carvalho, M.C., Loss, M.: Spectral gap for the KAC model with hard sphere collisions. J. Funct. Anal. 266 (3), 1787–1832 (2014)
10.
go back to reference Carlen, E., Carvalho, M., Loss, M.: Spectral gaps for reversible Markov processes with chaotic invariant measures: the KAC process with hard sphere collisions in three dimensions. Ann. Probab. 48 (6), 2807–2844 (2020) Carlen, E., Carvalho, M., Loss, M.: Spectral gaps for reversible Markov processes with chaotic invariant measures: the KAC process with hard sphere collisions in three dimensions. Ann. Probab. 48 (6), 2807–2844 (2020)
11.
go back to reference Carlen, E.A., Carvalho, M.C.: Strict entropy production bounds and stability of the rate of convergence to equilibrium for the Boltzmann equation. J. Stat. Phys. 67(3–4), 575–608 (1992) Carlen, E.A., Carvalho, M.C.: Strict entropy production bounds and stability of the rate of convergence to equilibrium for the Boltzmann equation. J. Stat. Phys. 67(3–4), 575–608 (1992)
12.
go back to reference Carrapatoso, K.: Quantitative and qualitative KAC’s Chaos on the Boltzmann’s Sphere. Ann. Inst. H. Poincaré Prob. Stat. 51(3), 993–1039 (2015) Carrapatoso, K.: Quantitative and qualitative KAC’s Chaos on the Boltzmann’s Sphere. Ann. Inst. H. Poincaré Prob. Stat. 51(3), 993–1039 (2015)
13.
go back to reference Cercignani, C.: H-theorem and trend to equilibrium in the kinetic theory of gases. Arch. Mech Archiwum Mechaniki Stosowanej 34, 231–241 (1982) Cercignani, C.: H-theorem and trend to equilibrium in the kinetic theory of gases. Arch. Mech Archiwum Mechaniki Stosowanej 34, 231–241 (1982)
14.
go back to reference Cohn, H.: On a Paper by Doeblin on Non-Homogeneous Markov Chains. Adv. Appl. Probab. 13(2), 388–401 (1981) Cohn, H.: On a Paper by Doeblin on Non-Homogeneous Markov Chains. Adv. Appl. Probab. 13(2), 388–401 (1981)
15.
go back to reference Desvillettes, L., Mouhot, C., Villani, C.: Celebrating Cercignani’s conjecture for the Boltzmann equation. Kinet. Relat. Model. 4(1), 277–294 (2011) Desvillettes, L., Mouhot, C., Villani, C.: Celebrating Cercignani’s conjecture for the Boltzmann equation. Kinet. Relat. Model. 4(1), 277–294 (2011)
16.
go back to reference Desvillettes, L., Villani, C.: On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation. Invent. Math. 159, 245–316 (2005) Desvillettes, L., Villani, C.: On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation. Invent. Math. 159, 245–316 (2005)
17.
go back to reference Le cas discontinu de probabilités en chaîne.: W. Doeblin. Publ. Fac. Sci. Univ. Masaryk (Brno) 236, 3–13 (1937) Le cas discontinu de probabilités en chaîne.: W. Doeblin. Publ. Fac. Sci. Univ. Masaryk (Brno) 236, 3–13 (1937)
18.
go back to reference Einav, A.: On the subadditivity of the entropy on the sphere. J. Geom. Anal. 26, 3098–3128 (2016) Einav, A.: On the subadditivity of the entropy on the sphere. J. Geom. Anal. 26, 3098–3128 (2016)
19.
go back to reference Einav, A.: On Villani’s conjecture concerning entropy production for the KAC master equation. Kinet. Relat. Models 4 (2), 479–497 (2011) Einav, A.: On Villani’s conjecture concerning entropy production for the KAC master equation. Kinet. Relat. Models 4 (2), 479–497 (2011)
20.
go back to reference Ferreira, L.S.: A lower bound for the spectral gap of the conjugate KAC process with 3 interacting particles. Kinet. Relat. Model. 15 (1), 91–117 (2022) Ferreira, L.S.: A lower bound for the spectral gap of the conjugate KAC process with 3 interacting particles. Kinet. Relat. Model. 15 (1), 91–117 (2022)
21.
go back to reference Gentil, I., Léonard, C., Ripani, L., Tamanini, L.: An entropic interpolation proof of the HWI inequality. Stoch. Proc. Appl. 130(2), 907–923 (2020) Gentil, I., Léonard, C., Ripani, L., Tamanini, L.: An entropic interpolation proof of the HWI inequality. Stoch. Proc. Appl. 130(2), 907–923 (2020)
23.
go back to reference Hauray, M., Mischler, S.: On Kac’s chaos and related problems. J. Funct. Anal. 266(10), 6055–6157 (2014) Hauray, M., Mischler, S.: On Kac’s chaos and related problems. J. Funct. Anal. 266(10), 6055–6157 (2014)
24.
go back to reference Janvresse, E.: Spectral gap for KAC’s model of Boltzmann Equation. Ann. Prob. 29, 288–304 (2001) Janvresse, E.: Spectral gap for KAC’s model of Boltzmann Equation. Ann. Prob. 29, 288–304 (2001)
25.
go back to reference Kac, M.: Foundations of kinetic theory. In: Neyman, J. (ed.) Proceedings of the 3rd Berkeley Symposium on Mathematical Statistics and Probability, pp. 171–197. University of California (1956) Kac, M.: Foundations of kinetic theory. In: Neyman, J. (ed.) Proceedings of the 3rd Berkeley Symposium on Mathematical Statistics and Probability, pp. 171–197. University of California (1956)
26.
go back to reference Kac, M.: Probability and Related Topics in Physical Sciences. Interscience Publication LTD., London, New York (1959) Kac, M.: Probability and Related Topics in Physical Sciences. Interscience Publication LTD., London, New York (1959)
28.
go back to reference Mehler, F.G.: Ueber die Entwicklung einer Function von beliebig vielen Variablen nach Laplaschen Functionen höherer Ordnungn. Crelle’s J. 66, 161–176 (1866) Mehler, F.G.: Ueber die Entwicklung einer Function von beliebig vielen Variablen nach Laplaschen Functionen höherer Ordnungn. Crelle’s J. 66, 161–176 (1866)
29.
go back to reference Mischler, S., Mouhot, C.: About KAC’s program in kinetic theory. Comptes Rendus Mathematique 349(23), 1245–1250 (2011) Mischler, S., Mouhot, C.: About KAC’s program in kinetic theory. Comptes Rendus Mathematique 349(23), 1245–1250 (2011)
30.
go back to reference Mischler, S., Wennberg, B.: On the spatially homogeneous Boltzmann equation. Ann. Inst. Henri Poincaré 16(4), 467–501 (1999) Mischler, S., Wennberg, B.: On the spatially homogeneous Boltzmann equation. Ann. Inst. Henri Poincaré 16(4), 467–501 (1999)
31.
go back to reference Norris, J.: A consistency estimate for KAC’s model with ellastic collisions in a dilute gas. Ann. Appl. Prob. 26(2), 1029–1081 (2016) Norris, J.: A consistency estimate for KAC’s model with ellastic collisions in a dilute gas. Ann. Appl. Prob. 26(2), 1029–1081 (2016)
32.
go back to reference Otto, F., Villani, C.: Generalization of an inequality by Talagrand, and links with the logarithmic Sobolev inequality. J. Funct. Anal. 173(2), 361–400 (2000) Otto, F., Villani, C.: Generalization of an inequality by Talagrand, and links with the logarithmic Sobolev inequality. J. Funct. Anal. 173(2), 361–400 (2000)
33.
go back to reference Pulvirenti, A., Toscani, G.: The theory of the nonlinear Boltzmann equation for Maxwell molecules in Fourier representation. Annal. Matem. Pura Appl. 171 (4), 181–204 (1996) Pulvirenti, A., Toscani, G.: The theory of the nonlinear Boltzmann equation for Maxwell molecules in Fourier representation. Annal. Matem. Pura Appl. 171 (4), 181–204 (1996)
34.
go back to reference Rousset, M.: A \(N\)-uniform quantitative Tanaka’s theorem for the conservative KAC’s \(N\)-particle system with Maxwell molecules (2014). arxiv:1407.1965 [math.PR] Rousset, M.: A \(N\)-uniform quantitative Tanaka’s theorem for the conservative KAC’s \(N\)-particle system with Maxwell molecules (2014). arxiv:​1407.​1965 [math.PR]
35.
go back to reference Talagrand, M.: Transportation cost for Gaussian and other product measures. Geom. Funct. Anal. 6(3), 587–600 (1996) Talagrand, M.: Transportation cost for Gaussian and other product measures. Geom. Funct. Anal. 6(3), 587–600 (1996)
36.
go back to reference Tanaka, H.: Probabilistic treatment of the Boltzmann equation of Maxwellian molecules. Probab. Theory Relat. Fields 46(1), 67–105 (1978) Tanaka, H.: Probabilistic treatment of the Boltzmann equation of Maxwellian molecules. Probab. Theory Relat. Fields 46(1), 67–105 (1978)
37.
go back to reference Toscani, G., Villani, C.: Probability metrics and uniqueness of the solution to the Boltzmann equation for a Maxwell gas. J. Stat. Phys. 94(3–4), 619–637 (1999) Toscani, G., Villani, C.: Probability metrics and uniqueness of the solution to the Boltzmann equation for a Maxwell gas. J. Stat. Phys. 94(3–4), 619–637 (1999)
38.
go back to reference Toscani, G., Villani, C.: Sharp entropy dissipation bounds and explicit rate of trend to equilibrium for the spatially homogeneous Boltzmann equation. Commun. Math. Phys. 203(3), 667–706 (1999) Toscani, G., Villani, C.: Sharp entropy dissipation bounds and explicit rate of trend to equilibrium for the spatially homogeneous Boltzmann equation. Commun. Math. Phys. 203(3), 667–706 (1999)
39.
go back to reference Villani, C.: A review of mathematical topics in collisional kinetic theory. Handbook Math. Fluid Dyn. 1, 71–74 (2002) Villani, C.: A review of mathematical topics in collisional kinetic theory. Handbook Math. Fluid Dyn. 1, 71–74 (2002)
40.
go back to reference Villani, C.: Cercignani’s conjecture is sometimes true and always almost true. Commun. Math. Phys. 234, 455–490 (2003) Villani, C.: Cercignani’s conjecture is sometimes true and always almost true. Commun. Math. Phys. 234, 455–490 (2003)
Metadata
Title
Entropy Production Bounds for the Kac Model are Uniform in the Number of Particles
Author
Luís Simão Ferreira
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-65195-3_5

Premium Partner