2019 | OriginalPaper | Chapter
Hint
Swipe to navigate through the chapters of this book
Published in:
Digitale Geschäftsmodelle – Band 2
Die zunehmende Digitalisierung sowie die allgegenwärtige Verfügbarkeit von Daten verändern das Wirtschaftsleben, den Alltag des Einzelnen und die Gesellschaft als Ganzes. Vor diesem Hintergrund wird der Einsatz von Maschinellen Lernverfahren in vielen Bereichen von Wirtschaft und Gesellschaft zum Teil kontrovers diskutiert. Mit Hilfe des Einsatzes solcher Algorithmen lassen sich beispielsweise Prognosen verbessern sowie Entscheidungen bzw. Entscheidungsprozesse automatisieren. In diesem Artikel geben wir zum einen einen Überblick über die Grundprinzipien Maschinellen Lernens. Zum anderen diskutieren wir Anwendungsmöglichkeiten sowie Wirtschaftlichkeitspotenziale am Beispiel des Kundenbeziehungszyklus.
Please log in to get access to this content
To get access to this content you need the following product:
Advertisement
1
2
3
4
5
Vgl. starke künstliche Intelligenz bzw. „Artificial General Intelligence“ (Pennachin und Goertzel
2007).
Durchführung der Studie im Jahr 2017.
Vgl. hierzu „Durchschnittliche Beratungszeit“, typische Bandbreite von 1,95–8,7 Minuten bei Erichsen (
2007).
Konservative Annahme für zwei API-Calls (Kategorisierung und Lösungsvorschlag) bedingt durch eventuelle Latenz und Verarbeitungsdauer; basierend auf Test via SAP API Business Hub (SAP
2017c).
go back to reference Amazon Developer (2017) Alexa. https://developer.amazon.com/public/solutions/alexa. Zugegriffen am 29.10.2017 Amazon Developer (2017) Alexa.
https://developer.amazon.com/public/solutions/alexa. Zugegriffen am 29.10.2017
go back to reference Ang L, Buttle F (2006) Managing for successful customer acquisition: an exploration. J Mark Manag 22(3–4):295–317 CrossRef Ang L, Buttle F (2006) Managing for successful customer acquisition: an exploration. J Mark Manag 22(3–4):295–317
CrossRef
go back to reference Apple (2017) Siri. http://www.apple.com/ios/siri. Zugegriffen am 29.10.2017 Apple (2017) Siri.
http://www.apple.com/ios/siri. Zugegriffen am 29.10.2017
go back to reference Batista G, Monard MC (2003) An analysis of four missing data treatment methods for supervised learning. Appl Artif Intell 17(5–6):519–533 CrossRef Batista G, Monard MC (2003) An analysis of four missing data treatment methods for supervised learning. Appl Artif Intell 17(5–6):519–533
CrossRef
go back to reference Bitkom (2017) Künstliche Intelligenz verstehen als Automation des Entscheidens. https://www.bitkom.org/noindex/Publikationen/2017/Leitfaden/Bitkom-Leitfaden-KI-verstehen-als-Automation-des-Entscheidens-2-Mai-2017.pdf. Zugegriffen am 17.09.2017 Bitkom (2017) Künstliche Intelligenz verstehen als Automation des Entscheidens.
https://www.bitkom.org/noindex/Publikationen/2017/Leitfaden/Bitkom-Leitfaden-KI-verstehen-als-Automation-des-Entscheidens-2-Mai-2017.pdf. Zugegriffen am 17.09.2017
go back to reference Breiman L (2001) Random forests. Mach Learn 45(1):5–32 MATHCrossRef Breiman L (2001) Random forests. Mach Learn 45(1):5–32
MATHCrossRef
go back to reference Bruhn M, Hadwich K (2012) Customer Experience – Eine Einführung in die theoretischen und praktischen Problemstellungen. In: Hadwich K (Hrsg) Customer experience. Springer Gabler, Wiesbaden, S 3–36 CrossRef Bruhn M, Hadwich K (2012) Customer Experience – Eine Einführung in die theoretischen und praktischen Problemstellungen. In: Hadwich K (Hrsg) Customer experience. Springer Gabler, Wiesbaden, S 3–36
CrossRef
go back to reference Brynjolfsson E, McAfee A (2017) The business of artificial intelligence. Harvard Business Review. https://hbr.org/cover-story/2017/07/the-business-of-artificial-intelligence. Zugegriffen am 29.09.2017 Brynjolfsson E, McAfee A (2017) The business of artificial intelligence. Harvard Business Review.
https://hbr.org/cover-story/2017/07/the-business-of-artificial-intelligence. Zugegriffen am 29.09.2017
go back to reference Buckinx W, Van den Poel (2005) Customer base analysis: partial defection of behaviourally loyal clients in a non-contractual FMCG retail setting. Eur J Oper Res 164(1):252–268 MATHCrossRef Buckinx W, Van den Poel (2005) Customer base analysis: partial defection of behaviourally loyal clients in a non-contractual FMCG retail setting. Eur J Oper Res 164(1):252–268
MATHCrossRef
go back to reference Burez J, Van den Poel D (2007) CRM at a pay-TV company: using analytical models to reduce customer attrition by targeted marketing for subscription services. Expert Syst Appl 32(2):277–288 CrossRef Burez J, Van den Poel D (2007) CRM at a pay-TV company: using analytical models to reduce customer attrition by targeted marketing for subscription services. Expert Syst Appl 32(2):277–288
CrossRef
go back to reference Buttle F (2009) Managing the customer lifecycle: customer acquisition. In: Buttle F, Maklan S (Hrsg) Customer relationship management: concepts and technologies. Taylor & Francis, London, S 1–23 Buttle F (2009) Managing the customer lifecycle: customer acquisition. In: Buttle F, Maklan S (Hrsg) Customer relationship management: concepts and technologies. Taylor & Francis, London, S 1–23
go back to reference Chen T, Guestrin C (2016) XGBoost: a scalable tree boosting system. arXiv preprint arXiv: 1603.02754 Chen T, Guestrin C (2016) XGBoost: a scalable tree boosting system. arXiv preprint arXiv: 1603.02754
go back to reference Chesbrough H (2007) Business model innovation: it’s not just about technology anymore. Strateg Leadersh 35(6):12–17 CrossRef Chesbrough H (2007) Business model innovation: it’s not just about technology anymore. Strateg Leadersh 35(6):12–17
CrossRef
go back to reference Christensen C (1997) The innovator’s dilemma. Harvard Business School Press, Cambridge Christensen C (1997) The innovator’s dilemma. Harvard Business School Press, Cambridge
go back to reference Committee on Technology National Science and Technology Council (2016) Preparing for the future of artificial intelligence. CreateSpace Independent Publishing Platform. https://obamawhitehouse.archives.gov/sites/default/files/whitehouse_files/microsites/ostp/NSTC/preparing_for_the_future_of_ai.pdf. Zugegriffen am 15.10.2017 Committee on Technology National Science and Technology Council (2016) Preparing for the future of artificial intelligence. CreateSpace Independent Publishing Platform.
https://obamawhitehouse.archives.gov/sites/default/files/whitehouse_files/microsites/ostp/NSTC/preparing_for_the_future_of_ai.pdf. Zugegriffen am 15.10.2017
go back to reference Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297 MATH Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297
MATH
go back to reference Coussement K, Van den Poel D (2008) Churn prediction in subscription services: an application of support vector machines while comparing two parameter-selection techniques. Expert Syst Appl 34(1):313–327 CrossRef Coussement K, Van den Poel D (2008) Churn prediction in subscription services: an application of support vector machines while comparing two parameter-selection techniques. Expert Syst Appl 34(1):313–327
CrossRef
go back to reference Coussement K, Van den Poel D (2009) Improving customer attrition prediction by integrating emotions from client/company interaction emails and evaluating multiple classifiers. Expert Syst Appl 36(3):6127–6134 CrossRef Coussement K, Van den Poel D (2009) Improving customer attrition prediction by integrating emotions from client/company interaction emails and evaluating multiple classifiers. Expert Syst Appl 36(3):6127–6134
CrossRef
go back to reference D’Haen J, Van den Poel D (2013) Model-supported business-to-business prospect prediction based on an iterative customer acquisition framework. Ind Mark Manag 42(4):544–551 CrossRef D’Haen J, Van den Poel D (2013) Model-supported business-to-business prospect prediction based on an iterative customer acquisition framework. Ind Mark Manag 42(4):544–551
CrossRef
go back to reference Dahlmeier D (2017) Machine learning: making customer service operations smarter and more strategic. https://news.sap.com/machine-learning-smart-customer-service. Zugegriffen am 06.11.2017 Dahlmeier D (2017) Machine learning: making customer service operations smarter and more strategic.
https://news.sap.com/machine-learning-smart-customer-service. Zugegriffen am 06.11.2017
go back to reference Damm W, Kalmar R (2017) Autonome Systeme. Informatik-Spektrum 40(5):400–408 CrossRef Damm W, Kalmar R (2017) Autonome Systeme. Informatik-Spektrum 40(5):400–408
CrossRef
go back to reference Davenport T, Kirby J (2016) Just how smart are smart machines? MIT Sloan Manag Rev 57(3):20–25 Davenport T, Kirby J (2016) Just how smart are smart machines? MIT Sloan Manag Rev 57(3):20–25
go back to reference Dorogush AV, Ershov V, Gulin A (2017) CatBoost: gradient boosting with categorical features support. In: Conference on Neural Information Processing Systems, Montréal Dorogush AV, Ershov V, Gulin A (2017) CatBoost: gradient boosting with categorical features support. In: Conference on Neural Information Processing Systems, Montréal
go back to reference Egle U, Keimer I, Hafner N (2014) KPIs zur Steuerung von Customer Contact Centern. In: Möller K, Schultze W (Hrsg) Produktivität von Dienstleistungen. Springer Fachmedien, Wiesbaden, S 505–543 Egle U, Keimer I, Hafner N (2014) KPIs zur Steuerung von Customer Contact Centern. In: Möller K, Schultze W (Hrsg) Produktivität von Dienstleistungen. Springer Fachmedien, Wiesbaden, S 505–543
go back to reference Erichsen J (2007) Benchmarking – von den Besten lernen. WissenHeute (Deutsche Telekom) 60(2):21–31 Erichsen J (2007) Benchmarking – von den Besten lernen. WissenHeute (Deutsche Telekom) 60(2):21–31
go back to reference Europäisches Parlament (2017) Bericht mit Empfehlungen an die Kommission zu zivilrechtlichen Regelungen im Bereich Robotik (2015/2103(INL)). http://www.europarl.europa.eu/sides/getDoc.do?type=REPORT&reference=A8-2017-0005&language=DE. Zugegriffen am 26.10.2017 Europäisches Parlament (2017) Bericht mit Empfehlungen an die Kommission zu zivilrechtlichen Regelungen im Bereich Robotik (2015/2103(INL)).
http://www.europarl.europa.eu/sides/getDoc.do?type=REPORT&reference=A8-2017-0005&language=DE. Zugegriffen am 26.10.2017
go back to reference Fachforum Autonome Systeme im Hightech-Forum (2017) Autonome Systeme – Chancen und Risiken für Wirtschaft, Wissenschaft und Gesellschaft. Kurzversion, Abschlussbericht, Berlin Fachforum Autonome Systeme im Hightech-Forum (2017) Autonome Systeme – Chancen und Risiken für Wirtschaft, Wissenschaft und Gesellschaft. Kurzversion, Abschlussbericht, Berlin
go back to reference Farquad H, Ravi V, Bapi R S (2009) Data Mining Using Rules Extracted from SVM: An Application to Churn Prediction in Bank Credit Cards. Rough Sets, Fuzzy Sets, Data Mining and Granular Computing: 390–397 Farquad H, Ravi V, Bapi R S (2009) Data Mining Using Rules Extracted from SVM: An Application to Churn Prediction in Bank Credit Cards. Rough Sets, Fuzzy Sets, Data Mining and Granular Computing: 390–397
go back to reference Google (2017) Google now. https://www.google.com/landing/now. Zugegriffen am 29.10.2017 Google (2017) Google now.
https://www.google.com/landing/now. Zugegriffen am 29.10.2017
go back to reference Grace K, Salvatier J, Dafoe A, Zhang B, Evans O (2017) When will AI exceed human performance? Evidence from AI experts. arXiv:1705.08807:1–21 Grace K, Salvatier J, Dafoe A, Zhang B, Evans O (2017) When will AI exceed human performance? Evidence from AI experts. arXiv:1705.08807:1–21
go back to reference Guzella TS, Caminhas WM (2009) A review of machine learning approaches to spam filtering. Expert Syst Appl 36(7):10206–10222 CrossRef Guzella TS, Caminhas WM (2009) A review of machine learning approaches to spam filtering. Expert Syst Appl 36(7):10206–10222
CrossRef
go back to reference Hsu CW, Chang CC, Lin CJ (2004) A practical guide to support vector classification. Technical report, Department of Computer Science and Information Engineering, National Taiwan University Hsu CW, Chang CC, Lin CJ (2004) A practical guide to support vector classification. Technical report, Department of Computer Science and Information Engineering, National Taiwan University
go back to reference Huber AS (2016) Das Digital Enterprise nimmt Gestalt an. In: Sendler U (Hrsg) Industrie 4.0 grenzenlos. Springer-Verlag, Berlin/Heidelberg, S 229–243 CrossRef Huber AS (2016) Das Digital Enterprise nimmt Gestalt an. In: Sendler U (Hrsg) Industrie 4.0 grenzenlos. Springer-Verlag, Berlin/Heidelberg, S 229–243
CrossRef
go back to reference Hung S, Yen DC, Wang H (2006) Applying data mining to telecom churn management. Expert Syst Appl 31(3):515–524 CrossRef Hung S, Yen DC, Wang H (2006) Applying data mining to telecom churn management. Expert Syst Appl 31(3):515–524
CrossRef
go back to reference Hurwitz J, Kaufman M, Bowles A (2015) Cognitive computing and big data analytics. John Wiley & Sons Inc, Hoboken Hurwitz J, Kaufman M, Bowles A (2015) Cognitive computing and big data analytics. John Wiley & Sons Inc, Hoboken
go back to reference IBM (2017) IBM Watson. https://www.ibm.com/watson. Zugegriffen am 28.10.2017 IBM (2017) IBM Watson.
https://www.ibm.com/watson. Zugegriffen am 28.10.2017
go back to reference Jahromi AT, Stakhovych S, Ewing M (2014) Managing B2B customer churn, retention and profitability. Ind Mark Manag 43(7):1258–1268 CrossRef Jahromi AT, Stakhovych S, Ewing M (2014) Managing B2B customer churn, retention and profitability. Ind Mark Manag 43(7):1258–1268
CrossRef
go back to reference Kelly K (2014) The three breakthroughs that have finally unleashed AI on the world. http://www.wired.com/2014/10/future-of-artificial-intelligence. Zugegriffen am 14.10.2017 Kelly K (2014) The three breakthroughs that have finally unleashed AI on the world.
http://www.wired.com/2014/10/future-of-artificial-intelligence. Zugegriffen am 14.10.2017
go back to reference Kelly JE, Hamm S (2013) Smart machines – IBM’s Watson and the era of cognitive computing. Columbia University Press, New York CrossRef Kelly JE, Hamm S (2013) Smart machines – IBM’s Watson and the era of cognitive computing. Columbia University Press, New York
CrossRef
go back to reference Kirui C, Li Hong L, Cheruiyot W, Kirui H (2013) Predicting customer churn in mobile telephony industry using probabilistic classifiers in data mining. Int J Comput Sci Issues 10(2):165–172 Kirui C, Li Hong L, Cheruiyot W, Kirui H (2013) Predicting customer churn in mobile telephony industry using probabilistic classifiers in data mining. Int J Comput Sci Issues 10(2):165–172
go back to reference Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th international joint conference of artificial intelligence 2:1137–1143 Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th international joint conference of artificial intelligence 2:1137–1143
go back to reference Kruppa J, Schwarz A, Arminger G, Ziegler A (2013) Consumer credit risk: individual probability estimates using machine learning. Expert Syst Appl 40(13):5125–5131 CrossRef Kruppa J, Schwarz A, Arminger G, Ziegler A (2013) Consumer credit risk: individual probability estimates using machine learning. Expert Syst Appl 40(13):5125–5131
CrossRef
go back to reference Lippold D (2016) Akquisitionszyklen und -prozesse im B2B-Bereich. Springer Gabler, Wiesbaden CrossRef Lippold D (2016) Akquisitionszyklen und -prozesse im B2B-Bereich. Springer Gabler, Wiesbaden
CrossRef
go back to reference Litjens G, Kooi T, Bejnordi EB, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JAWM, van Ginneken B, Sánchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88 CrossRef Litjens G, Kooi T, Bejnordi EB, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JAWM, van Ginneken B, Sánchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88
CrossRef
go back to reference Mainzer K (2016) Künstliche Intelligenz – Wann übernehmen die Maschinen? Springer, München CrossRef Mainzer K (2016) Künstliche Intelligenz – Wann übernehmen die Maschinen? Springer, München
CrossRef
go back to reference Marsland S (2015) Machine learning: an algorithmic perspective. Taylor & Francis Group, Florida Marsland S (2015) Machine learning: an algorithmic perspective. Taylor & Francis Group, Florida
go back to reference McCarthy J, Minsky ML, Rochester N, Shannon CE (1955) A proposal for the Dartmouth summer research project on artificial intelligence. http://jmc.stanford.edu/articles/dartmouth.html. Zugegriffen am 30.09.2017 McCarthy J, Minsky ML, Rochester N, Shannon CE (1955) A proposal for the Dartmouth summer research project on artificial intelligence.
http://jmc.stanford.edu/articles/dartmouth.html. Zugegriffen am 30.09.2017
go back to reference McKinsey (2017) A future that works: harnessing automation for a future that works. https://www.mckinsey.com/~/media/McKinsey/Global%20Themes/Digital%20Disruption/Harnessing%20automation%20for%20a%20future%20that%20works/MGI-A-future-that-works-Executive-summary.ashx. Zugegriffen am 12.10.2017 McKinsey (2017) A future that works: harnessing automation for a future that works.
https://www.mckinsey.com/~/media/McKinsey/Global%20Themes/Digital%20Disruption/Harnessing%20automation%20for%20a%20future%20that%20works/MGI-A-future-that-works-Executive-summary.ashx. Zugegriffen am 12.10.2017
go back to reference Megahed A, Yin P, Nezhad HRM (2016) An optimization approach to services sales forecasting in a multi-staged sales pipeline. In: IEEE international conference on services computing, San Francisco 713–719 Megahed A, Yin P, Nezhad HRM (2016) An optimization approach to services sales forecasting in a multi-staged sales pipeline. In: IEEE international conference on services computing, San Francisco 713–719
go back to reference Mitchell TM (1997) Machine learning. McGraw-Hill Inc, New York MATH Mitchell TM (1997) Machine learning. McGraw-Hill Inc, New York
MATH
go back to reference Murphy KP (2012) Machine learning: a probabilistic perspective. The MIT Press, Cambridge MATH Murphy KP (2012) Machine learning: a probabilistic perspective. The MIT Press, Cambridge
MATH
go back to reference Murthy SK (1998) Automatic construction of decision trees from data: a multi-disciplinary survey. Data Min Knowl Disc 2(4):345–389 CrossRef Murthy SK (1998) Automatic construction of decision trees from data: a multi-disciplinary survey. Data Min Knowl Disc 2(4):345–389
CrossRef
go back to reference Ngai EWT, Xiu L, Chau DCK (2009) Application of data mining techniques in customer relationship management: a literature review and classification. Expert Syst Appl 36(2):2592–2602 CrossRef Ngai EWT, Xiu L, Chau DCK (2009) Application of data mining techniques in customer relationship management: a literature review and classification. Expert Syst Appl 36(2):2592–2602
CrossRef
go back to reference Niefind F, Wiegran A (2010) Was sind Beschwerden? In: Ratajczak O (Hrsg) Erfolgreiches Beschwerdemanagement. Springer Gabler, Wiesbaden, S 19–32 CrossRef Niefind F, Wiegran A (2010) Was sind Beschwerden? In: Ratajczak O (Hrsg) Erfolgreiches Beschwerdemanagement. Springer Gabler, Wiesbaden, S 19–32
CrossRef
go back to reference Nilsson NJ (2014) Principles of artificial intelligence. Morgan Kaufmann, Burlington MATH Nilsson NJ (2014) Principles of artificial intelligence. Morgan Kaufmann, Burlington
MATH
go back to reference Osterwalder A, Pigneur Y (2010) Business model generation: a handbook for visionaries, game changers, and challengers. Wiley, Hoboken Osterwalder A, Pigneur Y (2010) Business model generation: a handbook for visionaries, game changers, and challengers. Wiley, Hoboken
go back to reference Patel J, Shah S, Thakkar P, Kotecha K (2015) Predicting stock and stock price index movement using Trend Deterministic Data Preparation and machine learning techniques. Expert Syst Appl 42(1):259–268 CrossRef Patel J, Shah S, Thakkar P, Kotecha K (2015) Predicting stock and stock price index movement using Trend Deterministic Data Preparation and machine learning techniques. Expert Syst Appl 42(1):259–268
CrossRef
go back to reference Pennachin C, Goertzel B (2007) Artificial general intelligence. Springer, Berlin/Heidelberg MATH Pennachin C, Goertzel B (2007) Artificial general intelligence. Springer, Berlin/Heidelberg
MATH
go back to reference Quinlan JR (1986) Induction of decision trees. Mach Learn 1:81–106 Quinlan JR (1986) Induction of decision trees. Mach Learn 1:81–106
go back to reference Reeves M, Ueda D (2016) Designing the machines that will design strategy. https://hbr.org/2016/04/welcoming-the-chief-strategy-robot. Zugegriffen am 30.09.2017 Reeves M, Ueda D (2016) Designing the machines that will design strategy.
https://hbr.org/2016/04/welcoming-the-chief-strategy-robot. Zugegriffen am 30.09.2017
go back to reference Reinartz W, Kumar V (2003) The impact of customer relationship characteristics on profitable lifetime duration. J Mark 67(1):77–99 CrossRef Reinartz W, Kumar V (2003) The impact of customer relationship characteristics on profitable lifetime duration. J Mark 67(1):77–99
CrossRef
go back to reference Reinartz W, Krafft M, Hoyer WD (2004) The customer relationship management process: its measurement and impact on performance. J Mark Res 41(3):293–305 CrossRef Reinartz W, Krafft M, Hoyer WD (2004) The customer relationship management process: its measurement and impact on performance. J Mark Res 41(3):293–305
CrossRef
go back to reference Ribeiro MT, Singh S, Guestrin C (2016) „Why should I trust you?“ Explaining the predictions of any classifier. arXiv:1602.04938 Ribeiro MT, Singh S, Guestrin C (2016) „Why should I trust you?“ Explaining the predictions of any classifier. arXiv:1602.04938
go back to reference Russell SJ, Norvig P (2010) Artificial intelligence – a modern approach. Pearson Education Inc., Upper Saddle River MATH Russell SJ, Norvig P (2010) Artificial intelligence – a modern approach. Pearson Education Inc., Upper Saddle River
MATH
go back to reference SAE International (2016): Taxonomy and definitions for terms related to on-road motor vehicle automated driving systems. J3016:1–16 SAE International (2016): Taxonomy and definitions for terms related to on-road motor vehicle automated driving systems. J3016:1–16
go back to reference Salesforce (2017) Salesforce Einstein is artificial intelligence in business technology – Salesforce EMEA. https://www.salesforce.com/eu/products/einstein/overview. Zugegriffen am 27.10.2017 Salesforce (2017) Salesforce Einstein is artificial intelligence in business technology – Salesforce EMEA.
https://www.salesforce.com/eu/products/einstein/overview. Zugegriffen am 27.10.2017
go back to reference SAP (2017a) Build your intelligent enterprise with machine learning, a case study with BASF. http://events.sap.com/sapandasug/en/session/32268. Zugegriffen am 30.10.2017 SAP (2017a) Build your intelligent enterprise with machine learning, a case study with BASF.
http://events.sap.com/sapandasug/en/session/32268. Zugegriffen am 30.10.2017
go back to reference SAP (2017b) Machine learning applications and platform. https://www.sap.com/products/leonardo/machine-learning.html. Zugegriffen am 24.10.2017 SAP (2017b) Machine learning applications and platform.
https://www.sap.com/products/leonardo/machine-learning.html. Zugegriffen am 24.10.2017
go back to reference SAP (2017c) SAP API business hub: SAP Leonardo machine learning – business services. https://api.sap.com/shell/discover/contentpackage/SAPLeonardoMLBusinessServices. Zugegriffen am 10.11.2017 SAP (2017c) SAP API business hub: SAP Leonardo machine learning – business services.
https://api.sap.com/shell/discover/contentpackage/SAPLeonardoMLBusinessServices. Zugegriffen am 10.11.2017
go back to reference SAP (2017d) SAP service ticket intelligence. https://help.sap.com/viewer/934ccff77ddb4fa2bf268a0085984db0/1708/en-US. Zugegriffen am 06.11.2017 SAP (2017d) SAP service ticket intelligence.
https://help.sap.com/viewer/934ccff77ddb4fa2bf268a0085984db0/1708/en-US. Zugegriffen am 06.11.2017
go back to reference Schapire RE, Freund Y (2012) Boosting: foundations and algorithms. The MIT Press, Cambridge MATH Schapire RE, Freund Y (2012) Boosting: foundations and algorithms. The MIT Press, Cambridge
MATH
go back to reference Schroeck M, Shockley R, Smart J, Romero-Morales D, Tufano P (2012) Analytics: the real-world use of big data. IBM Global Business Services 12:1–20 Schroeck M, Shockley R, Smart J, Romero-Morales D, Tufano P (2012) Analytics: the real-world use of big data. IBM Global Business Services 12:1–20
go back to reference Silver D, Huang A, Maddison CJ, Guez A, Sifre L, van den Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M, Dieleman S, Grewe D, Nham J, Kalchbrenner N, Sutskever I, Lillicrap T, Leach M, Kavukcuoglu K, Graepel T, Demis Hassabis D (2016) Mastering the game of go with deep neural networks and tree search. Nature 529:484–489 CrossRef Silver D, Huang A, Maddison CJ, Guez A, Sifre L, van den Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M, Dieleman S, Grewe D, Nham J, Kalchbrenner N, Sutskever I, Lillicrap T, Leach M, Kavukcuoglu K, Graepel T, Demis Hassabis D (2016) Mastering the game of go with deep neural networks and tree search. Nature 529:484–489
CrossRef
go back to reference Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, Guez A, Hubert T, Baker L, Lai M, Bolton A, Chen Y, Lillicrap T, Hui F, Sifre L, van den Driessche G, Graepel T, Hassabis D (2017) Mastering the game of Go without human knowledge. Nature 550:354–359 CrossRef Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, Guez A, Hubert T, Baker L, Lai M, Bolton A, Chen Y, Lillicrap T, Hui F, Sifre L, van den Driessche G, Graepel T, Hassabis D (2017) Mastering the game of Go without human knowledge. Nature 550:354–359
CrossRef
go back to reference Smith TM, Gopalakrishna S, Chatterjee R (2006) A three-stage model of integrated marketing communications at the marketing-sales interface. J Mark Res 43(4):564–579 CrossRef Smith TM, Gopalakrishna S, Chatterjee R (2006) A three-stage model of integrated marketing communications at the marketing-sales interface. J Mark Res 43(4):564–579
CrossRef
go back to reference Stanford University (2017) One hundred year study on artificial intelligence (AI100). https://ai100.stanford.edu. Zugegriffen am 17.11.2017 Stanford University (2017) One hundred year study on artificial intelligence (AI100).
https://ai100.stanford.edu. Zugegriffen am 17.11.2017
go back to reference Susto GA, Schirru A, Pampuri S, McLoone S, Beghi A (2015) Machine learning for predictive maintenance: a multiple classifier approach. IEEE Trans Ind Inf 11(3):812–819 CrossRef Susto GA, Schirru A, Pampuri S, McLoone S, Beghi A (2015) Machine learning for predictive maintenance: a multiple classifier approach. IEEE Trans Ind Inf 11(3):812–819
CrossRef
go back to reference Tamaddoni A, Stakhovych S, Ewing M (2016) Comparing churn prediction techniques and assessing their performance a contingent perspective. J Serv Res 19(2):123–141 CrossRef Tamaddoni A, Stakhovych S, Ewing M (2016) Comparing churn prediction techniques and assessing their performance a contingent perspective. J Serv Res 19(2):123–141
CrossRef
go back to reference Vafeiadis T, Diamantaras KI, Sarigiannidis G, Chatzisavvas KC (2015) A comparison of machine learning techniques for customer churn prediction. Simul Model Pract Theory 55:1–9 CrossRef Vafeiadis T, Diamantaras KI, Sarigiannidis G, Chatzisavvas KC (2015) A comparison of machine learning techniques for customer churn prediction. Simul Model Pract Theory 55:1–9
CrossRef
go back to reference Vallis H (2017) The art and science of reducing involuntary subscriber churn. Forrester consulting thought leadership paper [1–13MQMED]:1–11 Vallis H (2017) The art and science of reducing involuntary subscriber churn. Forrester consulting thought leadership paper [1–13MQMED]:1–11
go back to reference Verbeke W, Martens D, Baesens B (2014) Social network analysis for customer churn prediction. Appl Soft Comput 14:431–446 CrossRef Verbeke W, Martens D, Baesens B (2014) Social network analysis for customer churn prediction. Appl Soft Comput 14:431–446
CrossRef
go back to reference Wahlster W (2017) Künstliche Intelligenz als Grundlage autonomer Systeme. Informatik-Spektrum 40(5):409–418 CrossRef Wahlster W (2017) Künstliche Intelligenz als Grundlage autonomer Systeme. Informatik-Spektrum 40(5):409–418
CrossRef
go back to reference Wang YF, Chiang DA, Hsu MH, Lin CJ, Lin IL (2009) A recommender system to avoid customer churn: a case study. Expert Syst Appl 36(4):8071–8075 CrossRef Wang YF, Chiang DA, Hsu MH, Lin CJ, Lin IL (2009) A recommender system to avoid customer churn: a case study. Expert Syst Appl 36(4):8071–8075
CrossRef
go back to reference Watson HJ (2017) Preparing for the cognitive generation of decision support. MIS Q Exec 16(13):153–169 Watson HJ (2017) Preparing for the cognitive generation of decision support. MIS Q Exec 16(13):153–169
go back to reference Witten IH, Frank E, Hall MA, Pal CJ (2017) Data mining: practical machine learning tools and techniques. Elsevier Inc, Cambridge Witten IH, Frank E, Hall MA, Pal CJ (2017) Data mining: practical machine learning tools and techniques. Elsevier Inc, Cambridge
go back to reference World Economic Forum (2016) Digital transformation of industries: digital enterprise. http://reports.weforum.org/digital-transformation/wp-content/blogs.dir/94/mp/files/pages/files/digital-enterprise-narrative-final-january-2016.pdf. Zugegriffen am 11.11.2017 World Economic Forum (2016) Digital transformation of industries: digital enterprise.
http://reports.weforum.org/digital-transformation/wp-content/blogs.dir/94/mp/files/pages/files/digital-enterprise-narrative-final-january-2016.pdf. Zugegriffen am 11.11.2017
go back to reference Yan J, Zhang C, Zha H, Gong M, Sun C, Huang J, Chu S, Yang X (2015) On machine learning towards predictive sales pipeline analytics. In: Proceedings of the 29th AAAI conference on artificial intelligence 1945–1951 Yan J, Zhang C, Zha H, Gong M, Sun C, Huang J, Chu S, Yang X (2015) On machine learning towards predictive sales pipeline analytics. In: Proceedings of the 29th AAAI conference on artificial intelligence 1945–1951
go back to reference Yin S, Zhu X, Jing C (2014) Fault detection based on a robust one class support vector machine. Neurocomputing 145:263–268 CrossRef Yin S, Zhu X, Jing C (2014) Fault detection based on a robust one class support vector machine. Neurocomputing 145:263–268
CrossRef
go back to reference Yu L, Liu H (2004) Efficient feature selection via analysis of relevance and redundancy. J Mach Learn Res 5:1205–1224 MathSciNetMATH Yu L, Liu H (2004) Efficient feature selection via analysis of relevance and redundancy. J Mach Learn Res 5:1205–1224
MathSciNetMATH
go back to reference Zorn S, Jarvis W, Bellman S (2010) Attitudinal perspectives for predicting churn. J Res Interact Mark 4(2):157–169 CrossRef Zorn S, Jarvis W, Bellman S (2010) Attitudinal perspectives for predicting churn. J Res Interact Mark 4(2):157–169
CrossRef
- Title
- Entscheidungsunterstützung im Kundenbeziehungszyklus durch Maschinelle Lernverfahren
- DOI
- https://doi.org/10.1007/978-3-658-26316-4_1
- Authors:
-
Andreas Welsch
Verena Eitle
Peter Buxmann
- Publisher
- Springer Fachmedien Wiesbaden
- Sequence number
- 1
- Chapter number
- 1