Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2018 | OriginalPaper | Chapter

8. Entwicklung wirkungsvoller Umgebungen zur Untersuchung von Lehrerkompetenzen zum mathematischen Modellieren

Authors : Dr. Cheryl Eames, Dr Corey Brady, Dr. Hyunyi Jung, Aran Glancy, Dr. Richard Lesh

Published in: Lehrerkompetenzen zum Unterrichten mathematischer Modellierung

Publisher: Springer Fachmedien Wiesbaden

Zusammenfassung

In diesem Kapitel wird verdeutlicht, wie Modellierungsprozesse von Lernenden für die Lehrerausbildung zum Lehren von mathematischer Modellierung als ein wirkungsvolles Instrument eingesetzt werden können. Wir behaupten, dass sich die Expertise des Unterrichtens zum Teil darin widerspiegelt, wie Lehrkräfte Unterrichtssituationen interpretieren und darauf reagieren – sowohl darin, was sie sehen und erkennen, als auch darin, was sie tun. Wir beginnen unsere Ausführungen mit der Identifikation verschiedener Beliefs in Bezug auf mathematisches Denken und Lernen sowie den entsprechenden Unterrichtsmethoden, die die Schlüsselkompetenzen der Lehrkräfte zum Lehren und Lernen von Modellieren umfassen, die bei diesem Projekt in den Vordergrund gestellt wurden. Unsere Ergebnisse legen nahe, dass – bei Studien zur Entwicklung von Modellierungskompetenz bei Lernenden über die Dauer eines ganzen Kurs hinweg – signifikante wirkungsvolle Veränderungen auch bei den Kompetenzen auf Lehrerebene für das Lehren und Lernen von Modellieren stattfinden können. Ein Grund für diese Entwicklung auf Lehrerebene ist, dass die Lernenden bei den Modellierungsaktivitäten wichtige Aspekten ihres Denkens auf eine Weise ausdrücken, die direkt sowohl von Lehrenden als auch von Forschenden beobachtet werden können. Einblicke in die Denkweisen der Lernenden haben sich als starke Impulse zur Förderung von Lehrerkompetenzen zum Lehren mathematischer Modellierung erwiesen.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Blum, W. (2015). Quality teaching of mathematical modelling: What do we know, what can we do? In S. J. Cho (Hrsg.), The proceedings of the 12th International Congress on Mathematical Education: Intellectual and attitudinal Changes (S. 73–96). New York: Springer. Blum, W. (2015). Quality teaching of mathematical modelling: What do we know, what can we do? In S. J. Cho (Hrsg.), The proceedings of the 12th International Congress on Mathematical Education: Intellectual and attitudinal Changes (S. 73–96). New York: Springer.
go back to reference Brady, C., & Lesh, R. (2015). A models and modelling approach to risk and uncertainty. The Mathematics Enthusiast, 12(1), 184–202. Brady, C., & Lesh, R. (2015). A models and modelling approach to risk and uncertainty. The Mathematics Enthusiast, 12(1), 184–202.
go back to reference Brady, C., Eames, C. L., & Lesh, R. (2015). Connecting real-world and in-school problem-solving experiences. Quadrante, 24(2), 5–38. Brady, C., Eames, C. L., & Lesh, R. (2015). Connecting real-world and in-school problem-solving experiences. Quadrante, 24(2), 5–38.
go back to reference Brady, C., Dominguez, A., Glancy, A., Jung, H., McLean, J. & Middleton, J. (2016). Models and modelling working group. Proceedings of the Thirty-eighth Annual Conference of the North American Chapter of the International Group for the Psychology of Mathematics Education. Tucson, AZ: University of Arizona. Brady, C., Dominguez, A., Glancy, A., Jung, H., McLean, J. & Middleton, J. (2016). Models and modelling working group. Proceedings of the Thirty-eighth Annual Conference of the North American Chapter of the International Group for the Psychology of Mathematics Education. Tucson, AZ: University of Arizona.
go back to reference Brady, C., Eames, C.L. & Lesh, R. (accepted). The Student Experience of Model Development Activities: Going Beyond Correctness to Meet a Client’s Needs. Brady, C., Eames, C.L. & Lesh, R. (accepted). The Student Experience of Model Development Activities: Going Beyond Correctness to Meet a Client’s Needs.
go back to reference Chamberlin, M. T. (2005). Teachers’ discussions of students’ thinking: meeting the challenge of attending to students’ thinking. Journal of Mathematics Teacher Education, 8(2), 141–170. CrossRef Chamberlin, M. T. (2005). Teachers’ discussions of students’ thinking: meeting the challenge of attending to students’ thinking. Journal of Mathematics Teacher Education, 8(2), 141–170. CrossRef
go back to reference Cobb, P., McClain, K., de Silva Lamberg, T., & Dean, C. (2003). Situating teachers’ instructional practices in the institutional setting of the school and district. Educational Researcher, 32(6), 13–24. CrossRef Cobb, P., McClain, K., de Silva Lamberg, T., & Dean, C. (2003). Situating teachers’ instructional practices in the institutional setting of the school and district. Educational Researcher, 32(6), 13–24. CrossRef
go back to reference Diefes-Dux, H., Follman, D., Imbrie, P. K., Zawojewski, J., Capobianco, B., & Hjalmarson, M. A. (2004a). Model eliciting activities: an in-class approach to improving interest and persistence of women in engineering. In Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition. Salt Lake City. Bd. 1994. Diefes-Dux, H., Follman, D., Imbrie, P. K., Zawojewski, J., Capobianco, B., & Hjalmarson, M. A. (2004a). Model eliciting activities: an in-class approach to improving interest and persistence of women in engineering. In Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition. Salt Lake City. Bd. 1994.
go back to reference Doerr, H. M., & Lesh, R. (2003). A modelling perspective on teacher development. In R. Lesh & H. Doerr (Hrsg.), Beyond constructivism: a models and modelling perspectives on mathematics problem solving, learning, and teaching (S. 125–140). Mahwah: Lawrence Erlbaum. MATH Doerr, H. M., & Lesh, R. (2003). A modelling perspective on teacher development. In R. Lesh & H. Doerr (Hrsg.), Beyond constructivism: a models and modelling perspectives on mathematics problem solving, learning, and teaching (S. 125–140). Mahwah: Lawrence Erlbaum. MATH
go back to reference English, L. D., Jones, G., Bussi, M., Tirosh, D., Lesh, R., & Sriraman, B. (2008). Moving forward in international mathematics education research. MATH English, L. D., Jones, G., Bussi, M., Tirosh, D., Lesh, R., & Sriraman, B. (2008). Moving forward in international mathematics education research. MATH
go back to reference Hamilton, E., Lesh, R. A., Lester, F., & Brilleslyper, M. (2008). Model-eliciting activies (MEAs) as a bridge between engineering education research and mathematics education research. Advances in Engineering Education, 1(3), 1. Hamilton, E., Lesh, R. A., Lester, F., & Brilleslyper, M. (2008). Model-eliciting activies (MEAs) as a bridge between engineering education research and mathematics education research. Advances in Engineering Education, 1(3), 1.
go back to reference Hjalmarson, M. A., & Lesh, R. (2008). Design research: Engineering, systems, products, and processes for innovation. Handbook of international research in mathematics education, Bd. 2. Hjalmarson, M. A., & Lesh, R. (2008). Design research: Engineering, systems, products, and processes for innovation. Handbook of international research in mathematics education, Bd. 2.
go back to reference Jung, H. (2015). Strategies to support students’ model development. Mathematics Teaching in the Middle School, 21(1), 42–48. CrossRef Jung, H. (2015). Strategies to support students’ model development. Mathematics Teaching in the Middle School, 21(1), 42–48. CrossRef
go back to reference Jung, H., & Brady, C. (2015). Roles of a teacher and researcher during in situ professional development around the implementation of mathematical modelling tasks. Journal of Mathematics Teacher Education, 18(6), 1–19. Jung, H., & Brady, C. (2015). Roles of a teacher and researcher during in situ professional development around the implementation of mathematical modelling tasks. Journal of Mathematics Teacher Education, 18(6), 1–19.
go back to reference Katims, N., & Lesh, R. (1994). PACKETS: A guidebook for inservice mathematics teacher development. Lexington: DC Heath. Katims, N., & Lesh, R. (1994). PACKETS: A guidebook for inservice mathematics teacher development. Lexington: DC Heath.
go back to reference Kelly, A. E., & Lesh, R. (Hrsg.). (2000). The handbook of research design in mathematics and science education. Hillsdale: Lawrence Erlbaum. MATH Kelly, A. E., & Lesh, R. (Hrsg.). (2000). The handbook of research design in mathematics and science education. Hillsdale: Lawrence Erlbaum. MATH
go back to reference Kelly, A. E., Lesh, R., & Baec, J. Y. (2008). Handbook of innovative design research in science, technology, engineering, mathematics (STEM) education. Abingdon: Taylor & Francis. Kelly, A. E., Lesh, R., & Baec, J. Y. (2008). Handbook of innovative design research in science, technology, engineering, mathematics (STEM) education. Abingdon: Taylor & Francis.
go back to reference Kuntze, S., Siller, H.-S., & Vogl, C. (2013). Teachers’ self-perceptions of their pedagogical content knowledge related to modelling – an empirical study with Austrian teachers. In G. Stillman, G. Kaiser, W. Blum & J. P. Brown (Hrsg.), Teaching mathematical modelling: connecting to research and practice (S. 317–326). Dordrecht: Springer. CrossRef Kuntze, S., Siller, H.-S., & Vogl, C. (2013). Teachers’ self-perceptions of their pedagogical content knowledge related to modelling – an empirical study with Austrian teachers. In G. Stillman, G. Kaiser, W. Blum & J. P. Brown (Hrsg.), Teaching mathematical modelling: connecting to research and practice (S. 317–326). Dordrecht: Springer. CrossRef
go back to reference Lesh, R. (2003). Models & modelling in mathematics education. Monograph for International Journal for Mathematical Thinking & Learning, 5(2&3), 109–129. CrossRef Lesh, R. (2003). Models & modelling in mathematics education. Monograph for International Journal for Mathematical Thinking & Learning, 5(2&3), 109–129. CrossRef
go back to reference Lesh, R., & Doerr, H. M. (2003). In what ways does a models and modelling perspective move beyond constructivism? In R. Lesh & H. Doerr (Hrsg.), Beyond constructivism: A models and modelling perspectives on mathematics problem solving, learning, and teaching (S. 519–556). Mahwah: Lawrence Erlbaum. CrossRef Lesh, R., & Doerr, H. M. (2003). In what ways does a models and modelling perspective move beyond constructivism? In R. Lesh & H. Doerr (Hrsg.), Beyond constructivism: A models and modelling perspectives on mathematics problem solving, learning, and teaching (S. 519–556). Mahwah: Lawrence Erlbaum. CrossRef
go back to reference Lesh, R., & Harel, G. (2003). Problem solving, modelling, and local conceptual development. Mathematical Thinking and Learning, 5(2–3), 157–189. CrossRef Lesh, R., & Harel, G. (2003). Problem solving, modelling, and local conceptual development. Mathematical Thinking and Learning, 5(2–3), 157–189. CrossRef
go back to reference Lesh, R., & Kelly, A. (2000). Multitiered teaching experiments. In A. Kelly & R. Lesh (Hrsg.), Research design in mathematics and science education (S. 197–230). Mahwah: Lawrence Erlbaum. MATH Lesh, R., & Kelly, A. (2000). Multitiered teaching experiments. In A. Kelly & R. Lesh (Hrsg.), Research design in mathematics and science education (S. 197–230). Mahwah: Lawrence Erlbaum. MATH
go back to reference Lesh, R., & Sriraman, B. (2005). Mathematics education as a design science. ZDM, 37(6), 490–505. Lesh, R., & Sriraman, B. (2005). Mathematics education as a design science. ZDM, 37(6), 490–505.
go back to reference Lesh, R., Amit, M., & Schorr, R. Y. (1997). Using “real-life” problems to prompt students to construct conceptual models for statistical reasoning. The assessment challenge in statistics education, 1997, 65–83. Lesh, R., Amit, M., & Schorr, R. Y. (1997). Using “real-life” problems to prompt students to construct conceptual models for statistical reasoning. The assessment challenge in statistics education, 1997, 65–83.
go back to reference Lesh, R., Cramer, K., Doerr, H., Post, T., & Zawojewski, J. (2003). Model development sequences. In R. Lesh & H. Doerr (Hrsg.), Beyond constructivism: Models and modelling perspectives on mathematics problem solving, learning and teaching (S. 35–58). Mahwah: Erlbaum. CrossRef Lesh, R., Cramer, K., Doerr, H., Post, T., & Zawojewski, J. (2003). Model development sequences. In R. Lesh & H. Doerr (Hrsg.), Beyond constructivism: Models and modelling perspectives on mathematics problem solving, learning and teaching (S. 35–58). Mahwah: Erlbaum. CrossRef
go back to reference Lesh, R., Carmona, L., & Moore, T. (2009). Six sigma learning gains and long-term retention of understanding and attitudes related to models and modelling. Mediterranean Journal for Research in Mathematics Education, 9(1), 19–54. Lesh, R., Carmona, L., & Moore, T. (2009). Six sigma learning gains and long-term retention of understanding and attitudes related to models and modelling. Mediterranean Journal for Research in Mathematics Education, 9(1), 19–54.
go back to reference Lesh, R., Haines, C., Galbraith, P., & Hurford, A. (2010). International Conference on the Teaching of Mathematical Modelling and Applications. In R. Lesh (Hrsg.), Modelling students’ mathematical modelling competencies. New York: Springer. CrossRef Lesh, R., Haines, C., Galbraith, P., & Hurford, A. (2010). International Conference on the Teaching of Mathematical Modelling and Applications. In R. Lesh (Hrsg.), Modelling students’ mathematical modelling competencies. New York: Springer. CrossRef
go back to reference Moore, T. J. (2008). Model-eliciting activities: a case-based approach for getting students interested in materials science and engineering. Journal of Materials Education, 30(5–6), 295–310. Moore, T. J. (2008). Model-eliciting activities: a case-based approach for getting students interested in materials science and engineering. Journal of Materials Education, 30(5–6), 295–310.
go back to reference Moore, T. J., Miller, R. L., Lesh, R. A., Stohlmann, M. S., & Kim, Y. R. (2013). Modelling in engineering: the role of representational fluency in students’ conceptual understanding. Journal of Engineering Education, 102(1), 141–178. CrossRef Moore, T. J., Miller, R. L., Lesh, R. A., Stohlmann, M. S., & Kim, Y. R. (2013). Modelling in engineering: the role of representational fluency in students’ conceptual understanding. Journal of Engineering Education, 102(1), 141–178. CrossRef
go back to reference Schorr, R., & Lesh, R. (2003). A modelling approach for providing teacher development. In R. Lesh & H. Doerr (Hrsg.), Beyond constructivism: models and modelling perspectives on mathematics problem solving, learning and teaching (S. 141–158). Mahwah: Erlbaum. Schorr, R., & Lesh, R. (2003). A modelling approach for providing teacher development. In R. Lesh & H. Doerr (Hrsg.), Beyond constructivism: models and modelling perspectives on mathematics problem solving, learning and teaching (S. 141–158). Mahwah: Erlbaum.
go back to reference Schorr, R. Y., & Koellner-Clark, K. (2003). Using modelling approach to analyze the ways in which teachers consider new ways to teach mathematics. Mathematical Thinking and Learning, 5(2–3), 191–210. CrossRef Schorr, R. Y., & Koellner-Clark, K. (2003). Using modelling approach to analyze the ways in which teachers consider new ways to teach mathematics. Mathematical Thinking and Learning, 5(2–3), 191–210. CrossRef
go back to reference Wiggins, G., & McTighe, J. (2005). Understanding by design (2. Aufl.). Alexandra: ASCD. Wiggins, G., & McTighe, J. (2005). Understanding by design (2. Aufl.). Alexandra: ASCD.
go back to reference Yildirim, T. P., Shuman, L., & Besterfield-Sacre, M. (2010). Model-eliciting activities: assessing engineering student problem solving and skill integration processes. International Journal of Engineering Education, 26(4), 831–845. Yildirim, T. P., Shuman, L., & Besterfield-Sacre, M. (2010). Model-eliciting activities: assessing engineering student problem solving and skill integration processes. International Journal of Engineering Education, 26(4), 831–845.
Metadata
Title
Entwicklung wirkungsvoller Umgebungen zur Untersuchung von Lehrerkompetenzen zum mathematischen Modellieren
Authors
Dr. Cheryl Eames
Dr Corey Brady
Dr. Hyunyi Jung
Aran Glancy
Dr. Richard Lesh
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-658-22616-9_8

Premium Partner