Skip to main content
Top
Published in: Electrical Engineering 6/2022

08-07-2022 | Original Paper

Epoxy/graphite nanocomposites as dielectric resins with enhanced thermal conductivity

Authors: Renaud Metz, Lurayni Diaz-Chacon, Reinaldo Atencio, Philippe Dieudonné-George

Published in: Electrical Engineering | Issue 6/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Several industrial carbon fillers have been carried out to test their potential to improve the thermal conductivity of epoxy composite materials while maintaining their low electrical conductivity. Large samples (50 × 50 × 4 mm) were prepared, using an industrial high insulating anhydride cured-DGEBA epoxy resin of high viscosity (~ 8.5–15 Pa.s) and heavy molecular weight (385 g mol−1). The best results are obtained from graphite nanoplatelets GnP M: the relative increase in thermal conductivity (κcomp) reaches 100% (0.37 Wm−1 K−1) at load of 1.13 vol% while maintaining the electrical resistivity above 105 Ω m. These results are interpreted in terms of transport of acoustic phonons in a two-phase system composite. It is shown that the graphite-epoxy composite thermal conductivities can be discussed as a function on the graphite volume fraction, the graphite filler thickness (Lc), their aspect ratio and thermal boundary resistance (Rint). Rint is expressed as a function of κcomp, κf (filler intrinsic thermal conductivity), filler aspect ratio, and two constant values, one depending on the chemical bonding strength at the interface between the graphite particles and the matrix and the other depending on the filler dispersion homogeneity inside the matrix at the macroscopic scale.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Balandin AA (2011) The heat is on: graphene applications. IEEE Nanotechnol 5(4):15–19 Balandin AA (2011) The heat is on: graphene applications. IEEE Nanotechnol 5(4):15–19
2.
go back to reference Ghosh S, Teweldebrhan D, Morales JR, Garay JE, Balandin AA (2009) Thermal properties of the optically transparent pore-free nanostructured yttria-stabilized zirconia. J Appl Phys 106:113507–113514 Ghosh S, Teweldebrhan D, Morales JR, Garay JE, Balandin AA (2009) Thermal properties of the optically transparent pore-free nanostructured yttria-stabilized zirconia. J Appl Phys 106:113507–113514
3.
go back to reference Ikkawi R, Amos N, Lavrenov A, Krichevsky A, Teweldebrhan D, Ghosh S, Balandin AA, Litvinov D, Khizroev SJ (2008) Near-field optical transducer for heat-assisted magnetic recording for beyond-10-Tbit/in2 densities. J Nanoelectron Optoelectron 3:44–54 Ikkawi R, Amos N, Lavrenov A, Krichevsky A, Teweldebrhan D, Ghosh S, Balandin AA, Litvinov D, Khizroev SJ (2008) Near-field optical transducer for heat-assisted magnetic recording for beyond-10-Tbit/in2 densities. J Nanoelectron Optoelectron 3:44–54
4.
go back to reference Goyal V, Balandin AA (2012) Thermal properties of the hybrid graphene-metal nano-micro-composites: applications in thermal interface materials. Appl Phys Lett 97:073113–073114 Goyal V, Balandin AA (2012) Thermal properties of the hybrid graphene-metal nano-micro-composites: applications in thermal interface materials. Appl Phys Lett 97:073113–073114
5.
go back to reference Goyal V, Teweldebrhan D, Balandin AA (2010) Mechanically-exfoliated stacks of thin films of Bi2Te3Bi2Te3 topological insulators with enhanced thermoelectric performance. Appl Phys Lett 97:133117–133119 Goyal V, Teweldebrhan D, Balandin AA (2010) Mechanically-exfoliated stacks of thin films of Bi2Te3Bi2Te3 topological insulators with enhanced thermoelectric performance. Appl Phys Lett 97:133117–133119
6.
go back to reference Balandin AA, Shamsa M, Liu WL, Casiraghi C, Ferrari AC (2008) Thermal conductivity of ultrathin tetrahedral amorphous carbon films. Appl Phys Lett 93:043115–043123 Balandin AA, Shamsa M, Liu WL, Casiraghi C, Ferrari AC (2008) Thermal conductivity of ultrathin tetrahedral amorphous carbon films. Appl Phys Lett 93:043115–043123
7.
go back to reference Pascault JP, Williams RJJ (2010) Epoxy Polymers, Willey-vch Verlag GmbH & Co KGaA (Eds), Alemania, 1–2, Weinheim, Germany Pascault JP, Williams RJJ (2010) Epoxy Polymers, Willey-vch Verlag GmbH & Co KGaA (Eds), Alemania, 1–2, Weinheim, Germany
8.
go back to reference Li YL, Kuan CF, Chen CH, Kuan HC, Yip MC, Chiu SL, Chiang CL (2012) Preparation, thermal stability and electrical properties of PMMA/functionalized graphene oxide nanosheets composites. Mater Chem Phys 134:677–685 Li YL, Kuan CF, Chen CH, Kuan HC, Yip MC, Chiu SL, Chiang CL (2012) Preparation, thermal stability and electrical properties of PMMA/functionalized graphene oxide nanosheets composites. Mater Chem Phys 134:677–685
9.
go back to reference Cao L, Liu X, Na H, Wu Y, Zhenga W, Zhu J (2013) How a bio-based epoxy monomer enhanced the properties of diglycidyl ether of bisphenol A (DGEBA)/graphene composites. J Mater Chem A 1:5081–5088 Cao L, Liu X, Na H, Wu Y, Zhenga W, Zhu J (2013) How a bio-based epoxy monomer enhanced the properties of diglycidyl ether of bisphenol A (DGEBA)/graphene composites. J Mater Chem A 1:5081–5088
10.
go back to reference Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669 Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669
11.
go back to reference Novoselov KS, Geim AK, Morozov SV, Katnelson DI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200 Novoselov KS, Geim AK, Morozov SV, Katnelson DI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200
12.
go back to reference Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907 Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907
13.
go back to reference Ghosh S, Calizo I, Teweldebrhan D, Pokatilov EP, Nika DL, Balandin AA, Bao W, Miao F, Lau CN (2008) Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits. Appl Phys Lett 92(15):151911 Ghosh S, Calizo I, Teweldebrhan D, Pokatilov EP, Nika DL, Balandin AA, Bao W, Miao F, Lau CN (2008) Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits. Appl Phys Lett 92(15):151911
14.
go back to reference Ghosh S, Bao W, Nika DL, Subrina S, Pokatilov EP, Lau CN, Balandin AA (2010) Dimensional crossover of thermal transport in few-layer graphene. Nat Mater 9:555–558 Ghosh S, Bao W, Nika DL, Subrina S, Pokatilov EP, Lau CN, Balandin AA (2010) Dimensional crossover of thermal transport in few-layer graphene. Nat Mater 9:555–558
15.
go back to reference Nika DL, Ghosh S, Pokatilov EP, Balandin AA (2009) Lattice thermal conductivity of graphene flakes: comparison with bulk graphite. Appl Phys Lett 94:203103–203113 Nika DL, Ghosh S, Pokatilov EP, Balandin AA (2009) Lattice thermal conductivity of graphene flakes: comparison with bulk graphite. Appl Phys Lett 94:203103–203113
16.
go back to reference Yu C, Shi L, Yao Z, Li D, Majumdar A (2005) Thermal conductance and thermopower of an individual single-wall carbon nanotube. Nanoletters 5(9):1842–1846 Yu C, Shi L, Yao Z, Li D, Majumdar A (2005) Thermal conductance and thermopower of an individual single-wall carbon nanotube. Nanoletters 5(9):1842–1846
17.
go back to reference Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10:569–581 Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10:569–581
18.
go back to reference Nika DL, Balandin AA (2017) Phonons and thermal transport in graphene and graphene-based materials. Rep Prog Phys 80:036502 Nika DL, Balandin AA (2017) Phonons and thermal transport in graphene and graphene-based materials. Rep Prog Phys 80:036502
19.
go back to reference Gu J, Yang X, Lv Z, Li N, Liang C, Zhang Q (2016) Functionalized graphite nanoplatelets/epoxy resin nanocomposites with high thermal conductivity. Int J Heat Mass Transf 92:15–22 Gu J, Yang X, Lv Z, Li N, Liang C, Zhang Q (2016) Functionalized graphite nanoplatelets/epoxy resin nanocomposites with high thermal conductivity. Int J Heat Mass Transf 92:15–22
20.
go back to reference Segal M (2009) Selling graphene by the ton. Nature Nanotech 4:612–614 Segal M (2009) Selling graphene by the ton. Nature Nanotech 4:612–614
21.
go back to reference Mokhena TC, Mochane MJ, Sefadi JS, Motloung SV and Andala DM (2018) Thermal conductivity of graphite-based polymer composites, Chapter 11, IntechOpen, Impact of thermal conductivity on energy technologies, 181–197 Mokhena TC, Mochane MJ, Sefadi JS, Motloung SV and Andala DM (2018) Thermal conductivity of graphite-based polymer composites, Chapter 11, IntechOpen, Impact of thermal conductivity on energy technologies, 181–197
22.
go back to reference Burger N, Laachachi A, Ferriol M, Lutz M, Toniazzo V, Ruch D (2016) Review of thermal conductivity in composites: mechanisms, parameters and theory. Prog Polym Sci 61:1–28 Burger N, Laachachi A, Ferriol M, Lutz M, Toniazzo V, Ruch D (2016) Review of thermal conductivity in composites: mechanisms, parameters and theory. Prog Polym Sci 61:1–28
23.
go back to reference Fu YX, He ZX, Mo DC, Lu SS (2014) Thermal conductivity enhancement with different fillers for epoxy resin adhesives. Appl Therm Eng 66(1–2):493–498 Fu YX, He ZX, Mo DC, Lu SS (2014) Thermal conductivity enhancement with different fillers for epoxy resin adhesives. Appl Therm Eng 66(1–2):493–498
24.
go back to reference Tang B, Hu G, Gao H, Hai L (2015) Application of graphene as filler to improve thermal transport property of epoxy resin for thermal interface materials. Int J Heat Mass Transf 85:420–429 Tang B, Hu G, Gao H, Hai L (2015) Application of graphene as filler to improve thermal transport property of epoxy resin for thermal interface materials. Int J Heat Mass Transf 85:420–429
25.
go back to reference Shahil K, Balandin A (2012) Graphene−multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Lett 12:861–867 Shahil K, Balandin A (2012) Graphene−multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Lett 12:861–867
26.
go back to reference Prolongo SG, Jimenez-Suarez A, Moriche R, Ureña A (2014) Graphene nanoplatelets thickness and lateral size influence on the morphology and behavior of epoxy composites. Eur Pol J 61:206–214 Prolongo SG, Jimenez-Suarez A, Moriche R, Ureña A (2014) Graphene nanoplatelets thickness and lateral size influence on the morphology and behavior of epoxy composites. Eur Pol J 61:206–214
27.
go back to reference Samsudin SS, Majid MSA, Jamir MRM, Osman AF, Jaafar M, Alshahrani HA (2022) Physical, thermal transport and compressive properties of epoxy composite filled with graphitic- and ceramic-based thermally conductive nanofillers. Polymers 14(5):1014 Samsudin SS, Majid MSA, Jamir MRM, Osman AF, Jaafar M, Alshahrani HA (2022) Physical, thermal transport and compressive properties of epoxy composite filled with graphitic- and ceramic-based thermally conductive nanofillers. Polymers 14(5):1014
28.
go back to reference Wang Z, Qi R, Wang J, Qi S (2015) Thermal conductivity improvement of epoxy composite filled with expanded graphite. Ceram Int 41(10):13541–13546 Wang Z, Qi R, Wang J, Qi S (2015) Thermal conductivity improvement of epoxy composite filled with expanded graphite. Ceram Int 41(10):13541–13546
29.
go back to reference Pizza A, Metz R, Hassanzadeh M, Bantignies JL (2014) Life cycle assessment of nanocomposites made of thermally conductive graphite nanoplatelets. Int J Life Cycle Assess 19:1226–1237 Pizza A, Metz R, Hassanzadeh M, Bantignies JL (2014) Life cycle assessment of nanocomposites made of thermally conductive graphite nanoplatelets. Int J Life Cycle Assess 19:1226–1237
30.
go back to reference IUPAC (1995) Recommended terminology for the description of carbon as a solid. Pure Appl Chem 67:473–506 IUPAC (1995) Recommended terminology for the description of carbon as a solid. Pure Appl Chem 67:473–506
31.
go back to reference Parkash S (2009) Petroleum fuel manufacturing Handbook, McGraw-Hill Companies, Inc. (Eds) 154–156, New York. Parkash S (2009) Petroleum fuel manufacturing Handbook, McGraw-Hill Companies, Inc. (Eds) 154–156, New York.
32.
go back to reference Li M, Wilkinson D, Patchigolla K (2005) Comparison of particle size distributions measured using different techniques. Part Sci Tech 23:265–284 Li M, Wilkinson D, Patchigolla K (2005) Comparison of particle size distributions measured using different techniques. Part Sci Tech 23:265–284
33.
go back to reference Díaz L, Arévalo J, Plaza E, Atencio R (2011) Characterization by scanning electron microscopy of micro and nano spheres obtained by naphthalene using chemical vapor deposition. Acta Microsc 20(1):54–59 Díaz L, Arévalo J, Plaza E, Atencio R (2011) Characterization by scanning electron microscopy of micro and nano spheres obtained by naphthalene using chemical vapor deposition. Acta Microsc 20(1):54–59
34.
go back to reference Short MA, Walker PL (1963) Measurement of interlayer spacings and crystal sizes in turbostatic carbons. Carbon 1:3–9 Short MA, Walker PL (1963) Measurement of interlayer spacings and crystal sizes in turbostatic carbons. Carbon 1:3–9
35.
go back to reference He Y (2005) Rapid thermal conductivity measurement with a hot disk sensor Part 1 Theoretical considerations. Thermochim Acta 436:122–129 He Y (2005) Rapid thermal conductivity measurement with a hot disk sensor Part 1 Theoretical considerations. Thermochim Acta 436:122–129
36.
go back to reference He Y (2005) Rapid thermal conductivity measurement with a hot disk sensor Part 2 Characterization of thermal greases. Thermochim Acta 436:130–134 He Y (2005) Rapid thermal conductivity measurement with a hot disk sensor Part 2 Characterization of thermal greases. Thermochim Acta 436:130–134
37.
go back to reference Shenogina N, Shenogin S, Xue L, Keblinskia P (2005) On the lack of thermal percolation in carbon nanotube composites. Appl Phys Lett 87:133106 Shenogina N, Shenogin S, Xue L, Keblinskia P (2005) On the lack of thermal percolation in carbon nanotube composites. Appl Phys Lett 87:133106
38.
go back to reference Diaz-Chacon L, Metz R, Dieudonne P, Bantignies J-L, Tahir S, Hassanzadeh M, Sosa E, Atencio R (2015) Graphite nanoplatelets composite materials: role of the epoxy-system in the thermal conductivity. J Mater Sci Chem Eng 3:75–87 Diaz-Chacon L, Metz R, Dieudonne P, Bantignies J-L, Tahir S, Hassanzadeh M, Sosa E, Atencio R (2015) Graphite nanoplatelets composite materials: role of the epoxy-system in the thermal conductivity. J Mater Sci Chem Eng 3:75–87
39.
go back to reference Harb M, Schmising CVK, Enquist H, Jurgilaitis A, Maximov I, Shvets PV, Obraztsov AN, Khakhulin D, Wulff M, Larsson J (2012) The c-axis thermal conductivity of graphite film of nanometer thickness measured by time resolved X-ray diffraction. Appl Phys Lett 101:233108 Harb M, Schmising CVK, Enquist H, Jurgilaitis A, Maximov I, Shvets PV, Obraztsov AN, Khakhulin D, Wulff M, Larsson J (2012) The c-axis thermal conductivity of graphite film of nanometer thickness measured by time resolved X-ray diffraction. Appl Phys Lett 101:233108
40.
go back to reference Sun K, Stroscio MA, Dutta M (2009) Graphite c-axis thermal conductivity. Superlattices Microstruct 45:60–64 Sun K, Stroscio MA, Dutta M (2009) Graphite c-axis thermal conductivity. Superlattices Microstruct 45:60–64
41.
go back to reference Wei Z, Yang J, Chen W, Bi K, Li D, Chen Y (2014) Phonon mean free path of graphite along the c-axis. Appl Phys Lett 104:081903 Wei Z, Yang J, Chen W, Bi K, Li D, Chen Y (2014) Phonon mean free path of graphite along the c-axis. Appl Phys Lett 104:081903
42.
go back to reference Klemens PG (1958) Solid State Physics. Vol 7 (eds Seitz, F. & Turnbull, D.) 1–98, Academic Press, London Klemens PG (1958) Solid State Physics. Vol 7 (eds Seitz, F. & Turnbull, D.) 1–98, Academic Press, London
43.
go back to reference Yin C, Ziru L, Ganghe W, Chengyun W et al. (1991) Determination of heat capacity of explosives and related materials by DSC, Proc. Int. Pyrotech. Semin. 17th 1: 515–521. Yin C, Ziru L, Ganghe W, Chengyun W et al. (1991) Determination of heat capacity of explosives and related materials by DSC, Proc. Int. Pyrotech. Semin. 17th 1: 515–521.
44.
go back to reference Boden A, Boerner B, Kusch P, Firkowska I, Reich S (2014) Nanoplatelets size to control the alignment and thermal conductivity in copper-graphite composites. Nano Lett 14(6):3640–3644 Boden A, Boerner B, Kusch P, Firkowska I, Reich S (2014) Nanoplatelets size to control the alignment and thermal conductivity in copper-graphite composites. Nano Lett 14(6):3640–3644
45.
go back to reference Li Q, Guo Y, Li W, Qiu S, Zhu C, Wei W, Chen M, Liu C, Liao S, Gong Y, Mishra AK, Liu L (2014) Ultrahigh thermal conductivity of assembled aligned multilayer graphene/epoxy. Composite Chem Mater 26:4459–4465 Li Q, Guo Y, Li W, Qiu S, Zhu C, Wei W, Chen M, Liu C, Liao S, Gong Y, Mishra AK, Liu L (2014) Ultrahigh thermal conductivity of assembled aligned multilayer graphene/epoxy. Composite Chem Mater 26:4459–4465
46.
go back to reference Aliev AE, Lima M, Silverman EM, Baughman RH (2010) Thermal conductivity of multi-walled carbon nanotube sheets: radiation losses and quenching of phonon modes. Nanotechnology 21:035709 Aliev AE, Lima M, Silverman EM, Baughman RH (2010) Thermal conductivity of multi-walled carbon nanotube sheets: radiation losses and quenching of phonon modes. Nanotechnology 21:035709
47.
go back to reference Veca LM, Meziani MJ, Wang W, Wang X, Lu F, Zhang P, Lin Y, Fee R, Connell JW, Sun YP (2009) Carbon nanosheets for polymeric nanocomposites with high thermal conductivity. Adv Mater 21:2088–2092 Veca LM, Meziani MJ, Wang W, Wang X, Lu F, Zhang P, Lin Y, Fee R, Connell JW, Sun YP (2009) Carbon nanosheets for polymeric nanocomposites with high thermal conductivity. Adv Mater 21:2088–2092
48.
go back to reference Debelak B, Lafdi K (2007) Use of exfoliated graphite filler to enhance polymer physical properties. Carbon 45:1727–1734 Debelak B, Lafdi K (2007) Use of exfoliated graphite filler to enhance polymer physical properties. Carbon 45:1727–1734
Metadata
Title
Epoxy/graphite nanocomposites as dielectric resins with enhanced thermal conductivity
Authors
Renaud Metz
Lurayni Diaz-Chacon
Reinaldo Atencio
Philippe Dieudonné-George
Publication date
08-07-2022
Publisher
Springer Berlin Heidelberg
Published in
Electrical Engineering / Issue 6/2022
Print ISSN: 0948-7921
Electronic ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-022-01595-4

Other articles of this Issue 6/2022

Electrical Engineering 6/2022 Go to the issue