Skip to main content
Top

2018 | OriginalPaper | Chapter

3. “Equivalent Columns” for Helical Springs

Author : Vladimir Kobelev

Published in: Durability of Springs

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this chapter the helical spring is substituted by a flexible rod that is located along the axis of helix. This rod possesses the same mechanical features, as the spring itself. Its bending, torsion and compression stiffness are equal to the corresponding stiffness of the helical spring. This rod is known as an “equivalent column” of the helical spring. The “equivalent column” equations are considerable easier to handle than the original equations of the helical spring. The integral spring properties, as an axial and transversal stiffness, buckling loads, fundamental frequencies could be directly determined using the “equivalent column” equations. In contrast, the local properties, like stresses in the wire or contact forces, could be evaluated only with the more complicated equations of the helical elastic rod.
In this chapter the stability and transversal vibrations of the spring are studied from the unified point of view, which is based on the “equivalent column” concept. Buckling refers to the loss of stability up to the sudden and violent failure of straight bars or beams under the action of pressure forces, whose line of action is the column axis. This concept is applied for the stability of helical springs.
An alternative approach method is based on the dynamic criterion for the spring stability. The equations for transverse (lateral) vibrations of the compressed coil springs were derived. This solution expresses the fundamental natural frequency of the transverse vibrations of the column as the function of the axial force, as well as the variable length of the spring.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Andreeva, L.E.: Elastic Elements of Instruments (Russ.), 456 p. Mashgiz, Moscow (1962). [Transl.: Baruch, A., Alster, D.: Israel Program for Scientific Translation, Ltd., Jerusalem (1966)] Andreeva, L.E.: Elastic Elements of Instruments (Russ.), 456 p. Mashgiz, Moscow (1962). [Transl.: Baruch, A., Alster, D.: Israel Program for Scientific Translation, Ltd., Jerusalem (1966)]
go back to reference Becker, L.E., Chassie, G.G., Cleghorn, W.L.: On the natural frequencies of helical compression springs. Int. J. Mech. Sci. 44, 825–841 (2002)CrossRefMATH Becker, L.E., Chassie, G.G., Cleghorn, W.L.: On the natural frequencies of helical compression springs. Int. J. Mech. Sci. 44, 825–841 (2002)CrossRefMATH
go back to reference Biezeno, C.B., Koch, J.J.: Knickung von Schraubenfedern. Z. Angew. Math. Mech. 5, 279–280 (1925)CrossRefMATH Biezeno, C.B., Koch, J.J.: Knickung von Schraubenfedern. Z. Angew. Math. Mech. 5, 279–280 (1925)CrossRefMATH
go back to reference Bolotin, V.V.: The Dynamic Stability of Elastic Systems. Holden Day, San Francisco (1964)MATH Bolotin, V.V.: The Dynamic Stability of Elastic Systems. Holden Day, San Francisco (1964)MATH
go back to reference Chan, K.T., Wang, X.Q., So, R.M.C., Reid, S.R.: Superposed standing waves in a Timoshenko beam. Proc. R. Soc. A. 458, 83–108 (2002)MathSciNetCrossRefMATH Chan, K.T., Wang, X.Q., So, R.M.C., Reid, S.R.: Superposed standing waves in a Timoshenko beam. Proc. R. Soc. A. 458, 83–108 (2002)MathSciNetCrossRefMATH
go back to reference Collins, J.A., Busby, H.R., Staab, G.H.: Mechanical Design of Machine Elements and Machines: A Failure Prevention Perspective. Wiley (2010) Collins, J.A., Busby, H.R., Staab, G.H.: Mechanical Design of Machine Elements and Machines: A Failure Prevention Perspective. Wiley (2010)
go back to reference Costello, G.A.: Radial expansion of impacted helical springs. J. Appl. Mech. Trans. ASME. 42, 789–792 (1975)CrossRef Costello, G.A.: Radial expansion of impacted helical springs. J. Appl. Mech. Trans. ASME. 42, 789–792 (1975)CrossRef
go back to reference Dick J.: On transverse vibrations of a helical spring with pinned ends and no axial load. Philos. Mag. Ser. 7. 33, 222, 513–519 (1942) Dick J.: On transverse vibrations of a helical spring with pinned ends and no axial load. Philos. Mag. Ser. 7. 33, 222, 513–519 (1942)
go back to reference DIN EN 13906-1:2013-11 Cylindrical Helical Springs Made from Round Wire and Bar—Calculation and Design—Part 1: Compression Springs. German version EN 13906-1:2013 (2013) DIN EN 13906-1:2013-11 Cylindrical Helical Springs Made from Round Wire and Bar—Calculation and Design—Part 1: Compression Springs. German version EN 13906-1:2013 (2013)
go back to reference Encyclopedia of Spring Design: Spring Manufacturers Institute, 2001 Midwest Road, Suite 106, Oak Brook, IL 60523-1335 USA (2013) Encyclopedia of Spring Design: Spring Manufacturers Institute, 2001 Midwest Road, Suite 106, Oak Brook, IL 60523-1335 USA (2013)
go back to reference Frikha, A., Treyssédee, F., Cartraud, P.: Effect of axial load on the propagation of elastic waves in helical beams. Wave Motion. 48(1), 83–92 (2011)MathSciNetCrossRefMATH Frikha, A., Treyssédee, F., Cartraud, P.: Effect of axial load on the propagation of elastic waves in helical beams. Wave Motion. 48(1), 83–92 (2011)MathSciNetCrossRefMATH
go back to reference Godoy L.: Theory of Elastic Stability: Analysis and Sensitivity, 450 p. CRC Press (1999) Godoy L.: Theory of Elastic Stability: Analysis and Sensitivity, 450 p. CRC Press (1999)
go back to reference Guido, A.R., Della Pietra, L., della Valle, S.: Transverse vibrations of cylindrical helical springs. Meccanica. 13(2), 90–108 (1978)CrossRefMATH Guido, A.R., Della Pietra, L., della Valle, S.: Transverse vibrations of cylindrical helical springs. Meccanica. 13(2), 90–108 (1978)CrossRefMATH
go back to reference Haringx, J.A.: On highly compressible helical springs and rubber rods, and their application for vibration-free mountings. Philips Res. Rep. 3, 401–449 (1948) Haringx, J.A.: On highly compressible helical springs and rubber rods, and their application for vibration-free mountings. Philips Res. Rep. 3, 401–449 (1948)
go back to reference Helical Springs: Engineering Design Guides. The United Kingdom Atomic Energy Authority and Oxford University Press (1974). ISBN 0-19-859142X Helical Springs: Engineering Design Guides. The United Kingdom Atomic Energy Authority and Oxford University Press (1974). ISBN 0-19-859142X
go back to reference Kessler, D.A., Rabin, Y.: Stretching instability of helical springs. Phys. Rev. Lett. 90, 024301 (2003)CrossRef Kessler, D.A., Rabin, Y.: Stretching instability of helical springs. Phys. Rev. Lett. 90, 024301 (2003)CrossRef
go back to reference Kobelev, V.: Effect of static axial compression on the natural frequencies of helical springs. Multidiscip. Model. Mater. Struct. 10(3), 379–398 (2014)CrossRef Kobelev, V.: Effect of static axial compression on the natural frequencies of helical springs. Multidiscip. Model. Mater. Struct. 10(3), 379–398 (2014)CrossRef
go back to reference Kobelev, V.: Isoperimetric inequality in the periodic Greenhill problem of twisted elastic rod. Struct. Multidiscip. Optim. 54(1), 133–136 (2016)MathSciNetCrossRef Kobelev, V.: Isoperimetric inequality in the periodic Greenhill problem of twisted elastic rod. Struct. Multidiscip. Optim. 54(1), 133–136 (2016)MathSciNetCrossRef
go back to reference Kruzelecki, J., Zyczkowski, M.: On the concept of an equivalent column in the stability problem of compressed helical springs. Ing.-Archiv. 60, 367–377 (1990)CrossRef Kruzelecki, J., Zyczkowski, M.: On the concept of an equivalent column in the stability problem of compressed helical springs. Ing.-Archiv. 60, 367–377 (1990)CrossRef
go back to reference Leamy, M.J.: Intrinsic finite element modeling of nonlinear dynamic response in helical springs. In: ASME 2010 International Mechanical Engineering Congress and Exposition Volume 8: Dynamic Systems and Control, Parts A and B, Vancouver, BC, Canada, November 12–18, Paper No. IMECE2010-37434, pp. 857–867; 11. doi:10.1115/IMECE2010-37434 (2010) Leamy, M.J.: Intrinsic finite element modeling of nonlinear dynamic response in helical springs. In: ASME 2010 International Mechanical Engineering Congress and Exposition Volume 8: Dynamic Systems and Control, Parts A and B, Vancouver, BC, Canada, November 12–18, Paper No. IMECE2010-37434, pp. 857–867; 11. doi:10.​1115/​IMECE2010-37434 (2010)
go back to reference Lee, J.: Free vibration analysis of cylindrical helical springs by the pseudospectral method. J. Sound Vib. 302, 185–196 (2007)CrossRef Lee, J.: Free vibration analysis of cylindrical helical springs by the pseudospectral method. J. Sound Vib. 302, 185–196 (2007)CrossRef
go back to reference Lee, J., Thompson, D.J.: Dynamic stiffness formulation, free vibration and wave motion of helical springs. J. Sound Vib. 239, 297–320 (2001)CrossRef Lee, J., Thompson, D.J.: Dynamic stiffness formulation, free vibration and wave motion of helical springs. J. Sound Vib. 239, 297–320 (2001)CrossRef
go back to reference Lee, C.-Y., Zhuo, H.-C., Hsu, C.-W.: Lateral vibration of a composite stepped beam consisted of SMA helical spring based on equivalent Euler–Bernoulli beam theory. J. Sound Vib. 324, 179–193 (2009)CrossRef Lee, C.-Y., Zhuo, H.-C., Hsu, C.-W.: Lateral vibration of a composite stepped beam consisted of SMA helical spring based on equivalent Euler–Bernoulli beam theory. J. Sound Vib. 324, 179–193 (2009)CrossRef
go back to reference Leung, A.Y.T.: Vibration of thin pre-twisted helical beams. Int. J. Solids Struct. 47, 177–1195 (2010)CrossRefMATH Leung, A.Y.T.: Vibration of thin pre-twisted helical beams. Int. J. Solids Struct. 47, 177–1195 (2010)CrossRefMATH
go back to reference Majkut, L.: Free and forced vibrations of timoshenko beams described by single difference equation. J. Theor. Appl. Mech. 47(1), 193–210 (2009) Majkut, L.: Free and forced vibrations of timoshenko beams described by single difference equation. J. Theor. Appl. Mech. 47(1), 193–210 (2009)
go back to reference Ponomarev, S.D.: Stability of helical springs under compression and torsion (in Russian). In: Chudakov, E. A. (ed.) Mashinostr, Vol. 2. Moscow, pp 683–685 (1948) Ponomarev, S.D.: Stability of helical springs under compression and torsion (in Russian). In: Chudakov, E. A. (ed.) Mashinostr, Vol. 2. Moscow, pp 683–685 (1948)
go back to reference Ponomarev, S.D., Andreeva, L.E.: Calculation of Elastic Elements of Machines and Instruments. Moscow (1980) Ponomarev, S.D., Andreeva, L.E.: Calculation of Elastic Elements of Machines and Instruments. Moscow (1980)
go back to reference Renno, J.M., Mace, B.R.: Vibration modelling of helical springs with non-uniform ends. J. Sound Vib. 331(12), 2809–2823 (2012)CrossRef Renno, J.M., Mace, B.R.: Vibration modelling of helical springs with non-uniform ends. J. Sound Vib. 331(12), 2809–2823 (2012)CrossRef
go back to reference Satoh, T., Kunoh, T., Mizuno, M.: Buckling of coiled springs by combined torsion and axial compression. JSME Int. J. Ser. 1(31), 56–62 (1988) Satoh, T., Kunoh, T., Mizuno, M.: Buckling of coiled springs by combined torsion and axial compression. JSME Int. J. Ser. 1(31), 56–62 (1988)
go back to reference Skoczeń, B., Skrzypek, J.: Application of the equivalent column concept to the stability of axially compressed bellows. Int. J. Mech. Sci. 34(11), 901–916. doi:10.1016/0020-7403(92)90020-H (1992) Skoczeń, B., Skrzypek, J.: Application of the equivalent column concept to the stability of axially compressed bellows. Int. J. Mech. Sci. 34(11), 901–916. doi:10.​1016/​0020-7403(92)90020-H (1992)
go back to reference Stephen, N.G., Puchegger, S.: On the valid frequency range of Timoshenko beam theory. J. Sound Vib. 297, 1082–1087 (2006)CrossRef Stephen, N.G., Puchegger, S.: On the valid frequency range of Timoshenko beam theory. J. Sound Vib. 297, 1082–1087 (2006)CrossRef
go back to reference Taktak, M., Dammak, F., Abid, S., Haddar, M.: A finite element for dynamic analysis of a cylindrical isotropic helical spring. J. Mech. Mater. Struct. 3(4), (2008) Taktak, M., Dammak, F., Abid, S., Haddar, M.: A finite element for dynamic analysis of a cylindrical isotropic helical spring. J. Mech. Mater. Struct. 3(4), (2008)
go back to reference Yildirim, V.: Free vibration analysis of non-cylindrical coil springs by combined used of the transfer matrix and the complementary functions method. Commun. Numer. Methods Eng. 13, 487–494 (1997)CrossRefMATH Yildirim, V.: Free vibration analysis of non-cylindrical coil springs by combined used of the transfer matrix and the complementary functions method. Commun. Numer. Methods Eng. 13, 487–494 (1997)CrossRefMATH
go back to reference Yildirim, V.: Expression for predicting fundamental natural frequencies of non-cylindrical helical springs. J. Sound Vib. 252, 479–491 (2002)CrossRef Yildirim, V.: Expression for predicting fundamental natural frequencies of non-cylindrical helical springs. J. Sound Vib. 252, 479–491 (2002)CrossRef
go back to reference Yildirim, V.: On the linearized disturbance dynamic equations for buckling and free vibration of cylindrical helical coil springs under combined compression and torsion. Meccanica. 47(4), 1015–1033 (2012)MathSciNetCrossRefMATH Yildirim, V.: On the linearized disturbance dynamic equations for buckling and free vibration of cylindrical helical coil springs under combined compression and torsion. Meccanica. 47(4), 1015–1033 (2012)MathSciNetCrossRefMATH
go back to reference Yu, A.M., Yang, C.J., Nie, G.H.: Analytical formulation and evaluation for free vibration of naturally curved and twisted beams. J. Sound Vib. 329, 1376–1389 (2010)CrossRef Yu, A.M., Yang, C.J., Nie, G.H.: Analytical formulation and evaluation for free vibration of naturally curved and twisted beams. J. Sound Vib. 329, 1376–1389 (2010)CrossRef
go back to reference Yun, A.M., Hao, Y.: Free vibration analysis of cylindrical helical springs with noncircular cross-sections. J. Sound Vib. 330, 2628–2639 (2011)CrossRef Yun, A.M., Hao, Y.: Free vibration analysis of cylindrical helical springs with noncircular cross-sections. J. Sound Vib. 330, 2628–2639 (2011)CrossRef
go back to reference Ziegler, H.: Arguments for and against Engesser’s formulas. Ing. Arch. 52, 105–113 (1982)CrossRefMATH Ziegler, H.: Arguments for and against Engesser’s formulas. Ing. Arch. 52, 105–113 (1982)CrossRefMATH
go back to reference Ziegler, H., Huber, A.: Zur Knickung der gedrückten und tordierten Schraubenfeder. Z. Angew. Math. Phys. 1, 183–195 (1950)MATH Ziegler, H., Huber, A.: Zur Knickung der gedrückten und tordierten Schraubenfeder. Z. Angew. Math. Phys. 1, 183–195 (1950)MATH
Metadata
Title
“Equivalent Columns” for Helical Springs
Author
Vladimir Kobelev
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-58478-2_3

Premium Partner