Skip to main content
Top
Published in: Strength of Materials 2/2021

08-07-2021

Equivalent Properties Prediction of the Composite Ceramics with an Arbitrary-Shaped Inclusion

Authors: J. F. Yu, X. H. Ni, Z. G. Cheng, W. H. He, X. Q. Liu, Y. W. Fu

Published in: Strength of Materials | Issue 2/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Analysis of the effective properties in composite ceramics as mechanical properties analyzer can be a daunting task to handle. Here, we address two of its most prominent hurdles, namely, (i) solving the Eshelby tensor of an arbitrary-shaped inclusion (in this work, we separately consider the interaction tensor outside the inclusion and the Eshelby tensor inside the inclusion), while (ii) effective properties prediction of composite ceramics with arbitrary-shaped inclusion. To overcome the first issue, we derived analytical solution of the Eshelby tensor by Green’s function method for the Eshelby problem with an arbitrary-shaped inclusion and analyzed the influence of particle shape (particles with sharp angle and with edge angle) on the Eshelby tensor via numerical method. To approach the second issue, we adopted a recently popular IDD estimate, making changes to calculate the stiffness tensor of composites with inclusions. If the inclusions are randomly distributed in space, the equivalent stiffness of the composite materials is obtained via the direction probability density function and the Voigt method. Experiments on the related finite element analysis show the accuracy of numerical results with regard to the analytical solution of the Eshelby tensor and predict the effective properties of TiC-TiB2 ceramics containing hexagonal prism particles.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference X. C. Zhong, “An analytical model for a bridged crack in piezoelectric ceramics,” Math. Mech. Solids, 20, No. 9, 1073–1087 (2015).CrossRef X. C. Zhong, “An analytical model for a bridged crack in piezoelectric ceramics,” Math. Mech. Solids, 20, No. 9, 1073–1087 (2015).CrossRef
2.
go back to reference M. Zeidi and C. I. Kim, “Mechanics of fiber composites with fibers resistant to extension and flexure,” Math. Mech. Solids, 24, No. 1, 3–7 (2019).CrossRef M. Zeidi and C. I. Kim, “Mechanics of fiber composites with fibers resistant to extension and flexure,” Math. Mech. Solids, 24, No. 1, 3–7 (2019).CrossRef
3.
go back to reference J. D. Eshelby, “The determination of the elastic field of an ellipsoidal inclusion, and related problems,” P. Roy. Soc. A-Math. Phy., 241, No. 1226, 376–396 (1957). J. D. Eshelby, “The determination of the elastic field of an ellipsoidal inclusion, and related problems,” P. Roy. Soc. A-Math. Phy., 241, No. 1226, 376–396 (1957).
4.
go back to reference D. J. Green and J. H. Gong, An Introduction to the Mechanical Properties of Ceramics, Tsinghua University Press, Beijing, China (2003). D. J. Green and J. H. Gong, An Introduction to the Mechanical Properties of Ceramics, Tsinghua University Press, Beijing, China (2003).
5.
go back to reference T. Mori and K. Tanaka, “Average stress in matrix and average elastic energy of materials with misfitting inclusions,” Acta Metall., 21, No. 5, 571–574 (1973).CrossRef T. Mori and K. Tanaka, “Average stress in matrix and average elastic energy of materials with misfitting inclusions,” Acta Metall., 21, No. 5, 571–574 (1973).CrossRef
6.
go back to reference S. Y. Du and B. Wang, Micromechanics of Composites, Science Press, Beijing, China (1998). S. Y. Du and B. Wang, Micromechanics of Composites, Science Press, Beijing, China (1998).
7.
go back to reference R. M. Christensen and K. H. Lo, “Solutions for effective shear properties in three phase sphere and cylinder models,” J. Mech. Phys. Solids, 27, No. 4, 315–330 (1979).CrossRef R. M. Christensen and K. H. Lo, “Solutions for effective shear properties in three phase sphere and cylinder models,” J. Mech. Phys. Solids, 27, No. 4, 315–330 (1979).CrossRef
8.
go back to reference Q. S. Zheng and D. X. Du, “An explicit and universally applicable estimate for the effective properties of multiphase composites which accounts for inclusion distribution,” J. Mech. Phys. Solids, 49, No. 11, 2765–2788 (2001).CrossRef Q. S. Zheng and D. X. Du, “An explicit and universally applicable estimate for the effective properties of multiphase composites which accounts for inclusion distribution,” J. Mech. Phys. Solids, 49, No. 11, 2765–2788 (2001).CrossRef
9.
go back to reference H. Wang, S. Sun, D. Wang, et al., “Characterization of the structure of TiB2/TiC composites prepared via mechanical alloying and subsequent pressureless sintering,” Powder Technol., 217, 340–346 (2012).CrossRef H. Wang, S. Sun, D. Wang, et al., “Characterization of the structure of TiB2/TiC composites prepared via mechanical alloying and subsequent pressureless sintering,” Powder Technol., 217, 340–346 (2012).CrossRef
10.
go back to reference L. Liu, “Solutions to the Eshelby Conjectures,” P. Roy. Soc. A-Math. Phy., 464, No. 2091, 573–594 (2008). L. Liu, “Solutions to the Eshelby Conjectures,” P. Roy. Soc. A-Math. Phy., 464, No. 2091, 573–594 (2008).
11.
go back to reference W. N. Zou, Q. C. He, M. J. Huang, et al., “Eshelby’s problem of non-elliptical inclusions,” J. Mech. Phys. Solids, 58, No. 3, 346–372 (2010).CrossRef W. N. Zou, Q. C. He, M. J. Huang, et al., “Eshelby’s problem of non-elliptical inclusions,” J. Mech. Phys. Solids, 58, No. 3, 346–372 (2010).CrossRef
12.
go back to reference M. Kawashita and H. Nozaki, “Eshelby tensor of a polygonal inclusion and its special properties,” J. Elasticity, 64, No. 1, 71–84 (2001).CrossRef M. Kawashita and H. Nozaki, “Eshelby tensor of a polygonal inclusion and its special properties,” J. Elasticity, 64, No. 1, 71–84 (2001).CrossRef
13.
go back to reference S. Trotta, F. Marmo, and L. Rosati, “Analytical expression of the Eshelby tensor for arbitrary polygonal inclusions in two-dimensional elasticity,” Compos. Part B-Eng., 106, 48–58 (2016).CrossRef S. Trotta, F. Marmo, and L. Rosati, “Analytical expression of the Eshelby tensor for arbitrary polygonal inclusions in two-dimensional elasticity,” Compos. Part B-Eng., 106, 48–58 (2016).CrossRef
14.
go back to reference S. Trotta, G. Zuccaro, S. Sessa, et al., “On the evaluation of the Eshelby tensor for polyhedral inclusions of arbitrary shape,” Compos. Part B-Eng., 144, 267–281 (2018).CrossRef S. Trotta, G. Zuccaro, S. Sessa, et al., “On the evaluation of the Eshelby tensor for polyhedral inclusions of arbitrary shape,” Compos. Part B-Eng., 144, 267–281 (2018).CrossRef
15.
go back to reference M. Q. Liu and X. L. Gao, “Solution of the Eshelby-type anti-plane strain polygonal inclusion problem based on a simplified strain gradient elasticity theory,” Acta Mech., 225, No. 3, 809–823 (2014).CrossRef M. Q. Liu and X. L. Gao, “Solution of the Eshelby-type anti-plane strain polygonal inclusion problem based on a simplified strain gradient elasticity theory,” Acta Mech., 225, No. 3, 809–823 (2014).CrossRef
16.
go back to reference G. J. Rodin, “Eshelby’s inclusion problem for polygons and polyhedral,” J. Mech. Phys. Solids, 144, No. 12, 1977–1995 (1996).CrossRef G. J. Rodin, “Eshelby’s inclusion problem for polygons and polyhedral,” J. Mech. Phys. Solids, 144, No. 12, 1977–1995 (1996).CrossRef
17.
go back to reference K. Yanase, H. Chatterjee, and S. K. Ghosh, “On numerical evaluation of Eshelby tensor for superspherical and superellipsoidal inclusions in isotropic elastic material,” Compos. Part B-Eng., 192, No. 107964 (2020). K. Yanase, H. Chatterjee, and S. K. Ghosh, “On numerical evaluation of Eshelby tensor for superspherical and superellipsoidal inclusions in isotropic elastic material,” Compos. Part B-Eng., 192, No. 107964 (2020).
18.
go back to reference S. Onaka, “Averaged Eshelby tensor and elastic strain energy of a superspherical inclusion with uniform eigenstrains,” Phil. Mag. Lett., 81, No. 4, 265–272 (2001).CrossRef S. Onaka, “Averaged Eshelby tensor and elastic strain energy of a superspherical inclusion with uniform eigenstrains,” Phil. Mag. Lett., 81, No. 4, 265–272 (2001).CrossRef
19.
go back to reference M. J. Huang, P. Wu, G. Y. Guan, et al., “Explicit expressions of the Eshelby tensor for an arbitrary 3D weakly non-spherical inclusion,” Acta Mech., 217, Nos. 1–2, 17–38 (2011).CrossRef M. J. Huang, P. Wu, G. Y. Guan, et al., “Explicit expressions of the Eshelby tensor for an arbitrary 3D weakly non-spherical inclusion,” Acta Mech., 217, Nos. 1–2, 17–38 (2011).CrossRef
20.
go back to reference J. W. Ju and L. Z. Sun, “A novel formulation for the exterior-point Eshelby’s tensor of an ellipsoidal inclusion,” J. Appl. Mech., 66, No. 2, 570–574 (1999).CrossRef J. W. Ju and L. Z. Sun, “A novel formulation for the exterior-point Eshelby’s tensor of an ellipsoidal inclusion,” J. Appl. Mech., 66, No. 2, 570–574 (1999).CrossRef
21.
go back to reference X. G. Huang, J. Huang, Z. M. Zhao, et al., “Crystal growth and fracture behavior of solidified TiC-TiB2 prepared by combustion synthesis in high-gravity field,” Key Eng. Mater., 680, 141–146 (2016).CrossRef X. G. Huang, J. Huang, Z. M. Zhao, et al., “Crystal growth and fracture behavior of solidified TiC-TiB2 prepared by combustion synthesis in high-gravity field,” Key Eng. Mater., 680, 141–146 (2016).CrossRef
Metadata
Title
Equivalent Properties Prediction of the Composite Ceramics with an Arbitrary-Shaped Inclusion
Authors
J. F. Yu
X. H. Ni
Z. G. Cheng
W. H. He
X. Q. Liu
Y. W. Fu
Publication date
08-07-2021
Publisher
Springer US
Published in
Strength of Materials / Issue 2/2021
Print ISSN: 0039-2316
Electronic ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-021-00293-z

Other articles of this Issue 2/2021

Strength of Materials 2/2021 Go to the issue

Premium Partners