Skip to main content
Top

2024 | OriginalPaper | Chapter

Equivalent Room Air Temperature-Based Cooling Load Estimation Method for Stratum Ventilation

Authors : Sheng Zhang, Jinghua Jiang, Yong Cheng, Chao Huan, Zhang Lin

Published in: Stratum Ventilation—Advanced Air Distribution for Low-Carbon and Healthy Buildings

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Accurately estimating the cooling load is vital for designing and controlling air conditioning systems. However, challenges emerge when dealing with indoor air temperature stratification of stratum ventilation. Many current building simulation tools solely rely on the fully mixed air model, neglecting this stratification. In this chapter, a method is proposed to estimate the cooling load using the concept of equivalent room air temperature, aiming to overcome this limitation and enable accurate estimation using the fully mixed air model for stratum ventilation. The equivalent room air temperature refers to the air temperature that would yield the same cooling load as stratum ventilation when employing the fully mixed air model. To accomplish this, response surface methodology is utilized to establish a mathematical model that correlates the equivalent room air temperature with the supply air temperature, supply airflow rate, and room air temperature. Case studies are conducted using experimentally validated multi-node models to demonstrate the effectiveness of the proposed method. For the constant-air-volume system and the variable-air-volume system, the mean absolute errors under stratum ventilation are 0.02 and 5.78%. Compared to the conventional method, our approach significantly enhances the accuracy of cooling load estimation by 99.94% for stratum ventilation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Cheng Y, Yang B, Lin Z, Yang J, Jia J, Du Z (2018) Cooling load calculation methods in spaces with stratified air: a brief review and numerical investigation. Energy Build 165:47–55 Cheng Y, Yang B, Lin Z, Yang J, Jia J, Du Z (2018) Cooling load calculation methods in spaces with stratified air: a brief review and numerical investigation. Energy Build 165:47–55
2.
go back to reference Liang C, Shao X, Melikov AK, Li X (2018) Cooling load for the design of air terminals in a general non-uniform indoor environment oriented to local requirements. Energy Build 174:603–618CrossRef Liang C, Shao X, Melikov AK, Li X (2018) Cooling load for the design of air terminals in a general non-uniform indoor environment oriented to local requirements. Energy Build 174:603–618CrossRef
3.
go back to reference Griffith B, Chen Q (2004) Framework for coupling room air models to heat balance model load and energy calculations (RP-1222). HVAC R Res 10(2):91–111CrossRef Griffith B, Chen Q (2004) Framework for coupling room air models to heat balance model load and energy calculations (RP-1222). HVAC R Res 10(2):91–111CrossRef
4.
go back to reference Zhang S, Lin Z, Cheng Y (2017) Optimizing the set generating temperature to improve the designed performance of an ejector cooling system with thermal pumping effect (ECSTPE). Sol Energy 157:309–320CrossRef Zhang S, Lin Z, Cheng Y (2017) Optimizing the set generating temperature to improve the designed performance of an ejector cooling system with thermal pumping effect (ECSTPE). Sol Energy 157:309–320CrossRef
5.
go back to reference Xu H, Gao N, Niu J (2009) A method to generate effective cooling load factors for stratified air distribution systems using a floor-level air supply. HVAC&R Res 15(5):915–930CrossRef Xu H, Gao N, Niu J (2009) A method to generate effective cooling load factors for stratified air distribution systems using a floor-level air supply. HVAC&R Res 15(5):915–930CrossRef
6.
go back to reference Lau J, Niu JL (2003) Measurement and CFD simulation of the temperature stratification in an atrium using a floor level air supply method. Indoor Built Environ 12(4):265–280CrossRef Lau J, Niu JL (2003) Measurement and CFD simulation of the temperature stratification in an atrium using a floor level air supply method. Indoor Built Environ 12(4):265–280CrossRef
7.
8.
go back to reference Tian W, Han X, Zuo W, Sohn MD (2018) Building energy simulation coupled with CFD for indoor environment: a critical review and recent applications. Energy Build 165:184–199CrossRef Tian W, Han X, Zuo W, Sohn MD (2018) Building energy simulation coupled with CFD for indoor environment: a critical review and recent applications. Energy Build 165:184–199CrossRef
9.
go back to reference Megri AC, Yu Y (2015) Study of residential underfloor air distribution (UFAD) systems using a new modelling approach. Indoor Built Environ 26(1):5–20CrossRef Megri AC, Yu Y (2015) Study of residential underfloor air distribution (UFAD) systems using a new modelling approach. Indoor Built Environ 26(1):5–20CrossRef
10.
go back to reference Zhang W, Hiyama K, Kato S, Ishida Y (2013) Building energy simulation considering spatial temperature distribution for nonuniform indoor environment. Build Environ 63:89–96CrossRef Zhang W, Hiyama K, Kato S, Ishida Y (2013) Building energy simulation considering spatial temperature distribution for nonuniform indoor environment. Build Environ 63:89–96CrossRef
11.
go back to reference Chen Q, Van Der Kooi J (1990) A methodology for indoor airflow computations and energy analysis for a displacement ventilation system. Energy Build 14(4):259–271CrossRef Chen Q, Van Der Kooi J (1990) A methodology for indoor airflow computations and energy analysis for a displacement ventilation system. Energy Build 14(4):259–271CrossRef
12.
go back to reference Schiavon S, Lee KH, Bauman F, Webster T (2011) Simplified calculation method for design cooling loads in underfloor air distribution (UFAD) systems. Energy Build 43(2–3):517–528CrossRef Schiavon S, Lee KH, Bauman F, Webster T (2011) Simplified calculation method for design cooling loads in underfloor air distribution (UFAD) systems. Energy Build 43(2–3):517–528CrossRef
13.
go back to reference Zhang S, Cheng Y, Fang Z, Lin Z (2018) Dynamic control of room air temperature for stratum ventilation based on heat removal efficiency: method and experimental validations. Build Environ 140:107–118CrossRef Zhang S, Cheng Y, Fang Z, Lin Z (2018) Dynamic control of room air temperature for stratum ventilation based on heat removal efficiency: method and experimental validations. Build Environ 140:107–118CrossRef
14.
go back to reference Huan C, Wang FH, Lin Z, Wu XZ, Ma ZJ, Wang ZH et al (2016) An experimental investigation into stratum ventilation for the cooling of an office with asymmetrically distributed heat gains. Build Environ 110:76–88CrossRef Huan C, Wang FH, Lin Z, Wu XZ, Ma ZJ, Wang ZH et al (2016) An experimental investigation into stratum ventilation for the cooling of an office with asymmetrically distributed heat gains. Build Environ 110:76–88CrossRef
15.
go back to reference Zhang S, Cheng Y, Huan C, Lin Z (2018) Heat removal efficiency based multi-node model for both stratum ventilation and displacement ventilation. Build Environ 143:24–35CrossRef Zhang S, Cheng Y, Huan C, Lin Z (2018) Heat removal efficiency based multi-node model for both stratum ventilation and displacement ventilation. Build Environ 143:24–35CrossRef
16.
go back to reference Huan C, Wang F, Wu X, Lin Z, Ma Z, Wang Z (2018) Development of a nodal model for predicting the vertical temperature profile in a stratum-ventilated room. Energy Build 159:99–108CrossRef Huan C, Wang F, Wu X, Lin Z, Ma Z, Wang Z (2018) Development of a nodal model for predicting the vertical temperature profile in a stratum-ventilated room. Energy Build 159:99–108CrossRef
17.
go back to reference Zhang S, Cheng Y, Huan C, Lin Z (2019) Equivalent room air temperature based cooling load estimation method for stratum ventilation and displacement ventilation. Build Environ 148:67–81CrossRef Zhang S, Cheng Y, Huan C, Lin Z (2019) Equivalent room air temperature based cooling load estimation method for stratum ventilation and displacement ventilation. Build Environ 148:67–81CrossRef
18.
go back to reference Shen X, Zhang G, Bjerg B (2012) Investigation of response surface methodology for modelling ventilation rate of a naturally ventilated building. Build Environ 54:174–185CrossRef Shen X, Zhang G, Bjerg B (2012) Investigation of response surface methodology for modelling ventilation rate of a naturally ventilated building. Build Environ 54:174–185CrossRef
19.
go back to reference Zhou L, Haghighat F (2009) Optimization of ventilation system design and operation in office environment, Part I: Methodology. Build Environ 44(4):651–656CrossRef Zhou L, Haghighat F (2009) Optimization of ventilation system design and operation in office environment, Part I: Methodology. Build Environ 44(4):651–656CrossRef
20.
go back to reference Chen H, Moshfegh B, Cehlin M (2013) Computational investigation on the factors influencing thermal comfort for impinging jet ventilation. Build Environ 66:29–41CrossRef Chen H, Moshfegh B, Cehlin M (2013) Computational investigation on the factors influencing thermal comfort for impinging jet ventilation. Build Environ 66:29–41CrossRef
21.
go back to reference Mao N, Hao J, Cui B, Li Y, Song M, Xu Y et al (2018) Energy performance of a bedroom task/ambient air conditioning (TAC) system applied in different climate zones of China. Energy 159:724–736CrossRef Mao N, Hao J, Cui B, Li Y, Song M, Xu Y et al (2018) Energy performance of a bedroom task/ambient air conditioning (TAC) system applied in different climate zones of China. Energy 159:724–736CrossRef
22.
go back to reference Zhang S, Sun Y, Cheng Y, Huang P, Oladokun MO, Lin Z (2018) Response-surface-model-based system sizing for Nearly/Net zero energy buildings under uncertainty. Appl Energy 228:1020–1031CrossRef Zhang S, Sun Y, Cheng Y, Huang P, Oladokun MO, Lin Z (2018) Response-surface-model-based system sizing for Nearly/Net zero energy buildings under uncertainty. Appl Energy 228:1020–1031CrossRef
23.
go back to reference Megri AC, Haghighat F (2007) Zonal modeling for simulating indoor environment of buildings: review, recent developments, and applications. HVAC R Res 13(6):887–905CrossRef Megri AC, Haghighat F (2007) Zonal modeling for simulating indoor environment of buildings: review, recent developments, and applications. HVAC R Res 13(6):887–905CrossRef
24.
go back to reference Wang W, Chen J, Huang G, Lu Y (2017) Energy efficient HVAC control for an IPS-enabled large space in commercial buildings through dynamic spatial occupancy distribution. Appl Energy 207:305–323CrossRef Wang W, Chen J, Huang G, Lu Y (2017) Energy efficient HVAC control for an IPS-enabled large space in commercial buildings through dynamic spatial occupancy distribution. Appl Energy 207:305–323CrossRef
25.
go back to reference Huan C, Wang FH, Wu XZ, Lin Z, Wang ZH, Wang G (2015) A method to predict vertical temperature distribution in a stratum-ventilated environment. Hunan Daxue Xuebao/J Hunan Univ Nat Sci 42(5):134–140 Huan C, Wang FH, Wu XZ, Lin Z, Wang ZH, Wang G (2015) A method to predict vertical temperature distribution in a stratum-ventilated environment. Hunan Daxue Xuebao/J Hunan Univ Nat Sci 42(5):134–140
26.
go back to reference Attia S, Carlucci S (2015) Impact of different thermal comfort models on zero energy residential buildings in hot climate. Energy Build 102:117–128CrossRef Attia S, Carlucci S (2015) Impact of different thermal comfort models on zero energy residential buildings in hot climate. Energy Build 102:117–128CrossRef
27.
go back to reference Cheng Y, Fong ML, Yao T, Lin Z, Fong KF (2014) Uniformity of stratum-ventilated thermal environment and thermal sensation. Indoor Air 24(5):521–532CrossRef Cheng Y, Fong ML, Yao T, Lin Z, Fong KF (2014) Uniformity of stratum-ventilated thermal environment and thermal sensation. Indoor Air 24(5):521–532CrossRef
28.
go back to reference Zhang S, Cheng Y, Fang Z, Huan C, Lin Z (2017) Optimization of room air temperature in stratum-ventilated rooms for both thermal comfort and energy saving. Appl Energy 204:420–431CrossRef Zhang S, Cheng Y, Fang Z, Huan C, Lin Z (2017) Optimization of room air temperature in stratum-ventilated rooms for both thermal comfort and energy saving. Appl Energy 204:420–431CrossRef
29.
go back to reference Wu X, Olesen BW, Fang L, Zhao J (2013) A nodal model to predict vertical temperature distribution in a room with floor heating and displacement ventilation. Build Environ 59:626–634CrossRef Wu X, Olesen BW, Fang L, Zhao J (2013) A nodal model to predict vertical temperature distribution in a room with floor heating and displacement ventilation. Build Environ 59:626–634CrossRef
30.
go back to reference Mateus NM, Graça GCD (2015) Simplified modeling of displacement ventilation systems with chilled ceilings. Energy Build 108:44–54CrossRef Mateus NM, Graça GCD (2015) Simplified modeling of displacement ventilation systems with chilled ceilings. Energy Build 108:44–54CrossRef
31.
go back to reference Mateus NM, Carrilho da Graça G (2017) Simulated and measured performance of displacement ventilation systems in large rooms. Build Environ 114:470–482 Mateus NM, Carrilho da Graça G (2017) Simulated and measured performance of displacement ventilation systems in large rooms. Build Environ 114:470–482
32.
go back to reference Ai ZT, Mak CM (2016) Short-term mechanical ventilation of air-conditioned residential buildings: a general design framework and guidelines. Build Environ 108:12–22CrossRef Ai ZT, Mak CM (2016) Short-term mechanical ventilation of air-conditioned residential buildings: a general design framework and guidelines. Build Environ 108:12–22CrossRef
33.
go back to reference Deng Y, Feng Z, Fang J, Cao SJ (2018) Impact of ventilation rates on indoor thermal comfort and energy efficiency of ground-source heat pump system. Sustain Cities Soc 37:154–163CrossRef Deng Y, Feng Z, Fang J, Cao SJ (2018) Impact of ventilation rates on indoor thermal comfort and energy efficiency of ground-source heat pump system. Sustain Cities Soc 37:154–163CrossRef
34.
go back to reference Lee CK, Lam HN (2007) Computer modeling of displacement ventilation systems based on plume rise in stratified environment. Energy Build 39(4):427–436CrossRef Lee CK, Lam HN (2007) Computer modeling of displacement ventilation systems based on plume rise in stratified environment. Energy Build 39(4):427–436CrossRef
35.
go back to reference Kosonen R, Lastovets N, Mustakallio P, da Graça GC, Mateus NM, Rosenqvist M (2016) The effect of typical buoyant flow elements and heat load combinations on room air temperature profile with displacement ventilation. Build Environ 108:207–219CrossRef Kosonen R, Lastovets N, Mustakallio P, da Graça GC, Mateus NM, Rosenqvist M (2016) The effect of typical buoyant flow elements and heat load combinations on room air temperature profile with displacement ventilation. Build Environ 108:207–219CrossRef
36.
go back to reference Melikov A, Pitchurov G, Naydenov K, Langkilde G (2005) Field study on occupant comfort and the office thermal environment in rooms with displacement ventilation. Indoor Air 15(3):205–214CrossRef Melikov A, Pitchurov G, Naydenov K, Langkilde G (2005) Field study on occupant comfort and the office thermal environment in rooms with displacement ventilation. Indoor Air 15(3):205–214CrossRef
37.
go back to reference Lin Z, Chow TT, Fong KF, Tsang CF, Wang Q (2005) Comparison of performances of displacement and mixing ventilations, Part II: Indoor air quality. Int J Refriger 28(2):288–305CrossRef Lin Z, Chow TT, Fong KF, Tsang CF, Wang Q (2005) Comparison of performances of displacement and mixing ventilations, Part II: Indoor air quality. Int J Refriger 28(2):288–305CrossRef
38.
go back to reference Fong KF, Lee CK, Lin Z (2019) Investigation on effect of indoor air distribution strategy on solar air-conditioning systems. Renew Energy 131:413–421CrossRef Fong KF, Lee CK, Lin Z (2019) Investigation on effect of indoor air distribution strategy on solar air-conditioning systems. Renew Energy 131:413–421CrossRef
39.
go back to reference Huang P, Huang G, Wang Y (2015) HVAC system design under peak load prediction uncertainty using multiple-criterion decision making technique. Energy Build 91:26–36CrossRef Huang P, Huang G, Wang Y (2015) HVAC system design under peak load prediction uncertainty using multiple-criterion decision making technique. Energy Build 91:26–36CrossRef
40.
go back to reference Cui B, Gao DC, Xiao F, Wang S (2017) Model-based optimal design of active cool thermal energy storage for maximal life-cycle cost saving from demand management in commercial buildings. Appl Energy 201:382–396CrossRef Cui B, Gao DC, Xiao F, Wang S (2017) Model-based optimal design of active cool thermal energy storage for maximal life-cycle cost saving from demand management in commercial buildings. Appl Energy 201:382–396CrossRef
41.
go back to reference Gao DC, Sun Y (2016) A GA-based coordinated demand response control for building group level peak demand limiting with benefits to grid power balance. Energy Build 110:31–40CrossRef Gao DC, Sun Y (2016) A GA-based coordinated demand response control for building group level peak demand limiting with benefits to grid power balance. Energy Build 110:31–40CrossRef
42.
go back to reference Atam E (2017) Current software barriers to advanced model-based control design for energy-efficient buildings. Renew Sustain Energy Rev 73:1031–1040CrossRef Atam E (2017) Current software barriers to advanced model-based control design for energy-efficient buildings. Renew Sustain Energy Rev 73:1031–1040CrossRef
43.
go back to reference Wang J, Jia QS, Huang G, Sun Y (2018) Event-driven optimal control of central air-conditioning systems: event-space establishment. Sci Technol Built Environ 24(8):839–849CrossRef Wang J, Jia QS, Huang G, Sun Y (2018) Event-driven optimal control of central air-conditioning systems: event-space establishment. Sci Technol Built Environ 24(8):839–849CrossRef
44.
go back to reference Cheng Y, Lin Z, Fong AML (2015) Effects of temperature and supply airflow rate on thermal comfort in a stratum-ventilated room. Build Environ 92:269–277CrossRef Cheng Y, Lin Z, Fong AML (2015) Effects of temperature and supply airflow rate on thermal comfort in a stratum-ventilated room. Build Environ 92:269–277CrossRef
45.
go back to reference Zhang S, Cheng Y, Huan C, Lin Z (2019) Systematic comparisons of exit air temperature and wall temperature for modelling non-uniform thermal environment of stratum ventilation. Build Environ 149:120–133CrossRef Zhang S, Cheng Y, Huan C, Lin Z (2019) Systematic comparisons of exit air temperature and wall temperature for modelling non-uniform thermal environment of stratum ventilation. Build Environ 149:120–133CrossRef
Metadata
Title
Equivalent Room Air Temperature-Based Cooling Load Estimation Method for Stratum Ventilation
Authors
Sheng Zhang
Jinghua Jiang
Yong Cheng
Chao Huan
Zhang Lin
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-6855-4_11