Skip to main content
Top

2025 | OriginalPaper | Chapter

Equivariant Diffusion-Based Sequential Hypergraph Neural Networks with Co-attention Fusion for Information Diffusion Prediction

Authors : Ye Lu, Ji Zhang, Ting Yu, Gaoming Yang

Published in: Web Information Systems Engineering – WISE 2024

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Information spread within social networks is a complex process with broad implications. Predicting information diffusion is crucial for understanding information spread within social networks. However, previous research has primarily focused on the homogeneity characteristics of internal cascades, such as temporal and social relationships, neglecting the impact of external information propagation. Additionally, conventional methods of feature integration simply merge cascade and user embeddings, which may introduce excessive redundant information and result in the loss of valuable contextual information critical for accurate predictions. To address these limitations, we present a novel model, the Equivariant Diffusion-based Sequential Hypergraph Neural Network with Co-Attention Fusion (EDSHNN-CAF). Within its cascade feature learning module, the model proposes hypergraphs with equivariant diffusion operators to incorporate external cascade influences alongside internal features. This approach effectively captures complex high-order interconnections and accurately reflects the dynamics of information diffusion. In the feature fusion and prediction module, a co-attention mechanism is designed to seamlessly integrate cascade and user embeddings, revealing their complex interdependencies and significantly enhancing predictive capabilities. Experimental results on four real datasets showcase the promising performance of EDSHNN-CAF in predicting information diffusion, outperforming existing state-of-the-art information diffusion prediction models.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bai, S., Zhang, F., Torr, P.H.: Hypergraph convolution and hypergraph attention. Pattern Recogn. 110, 107637 (2021)CrossRef Bai, S., Zhang, F., Torr, P.H.: Hypergraph convolution and hypergraph attention. Pattern Recogn. 110, 107637 (2021)CrossRef
2.
go back to reference Cheng, J., Adamic, L., Dow, P.A., Kleinberg, J.M., Leskovec, J.: Can cascades be predicted? In: WWW, pp. 925–936 (2014) Cheng, J., Adamic, L., Dow, P.A., Kleinberg, J.M., Leskovec, J.: Can cascades be predicted? In: WWW, pp. 925–936 (2014)
3.
go back to reference Feng, Y., You, H., Zhang, Z., Ji, R., Gao, Y.: Hypergraph neural networks. In: AAAI, pp. 3558–3565 (2019) Feng, Y., You, H., Zhang, Z., Ji, R., Gao, Y.: Hypergraph neural networks. In: AAAI, pp. 3558–3565 (2019)
4.
go back to reference Gao, X., Cao, Z., Li, S., Yao, B., Chen, G., Tang, S.: Taxonomy and evaluation for microblog popularity prediction. ACM TKDD 13(2), 1–40 (2019)CrossRef Gao, X., Cao, Z., Li, S., Yao, B., Chen, G., Tang, S.: Taxonomy and evaluation for microblog popularity prediction. ACM TKDD 13(2), 1–40 (2019)CrossRef
5.
go back to reference Hodas, N.O., Lerman, K.: The simple rules of social contagion. Sci. Rep. 4(1), 4343 (2014)CrossRef Hodas, N.O., Lerman, K.: The simple rules of social contagion. Sci. Rep. 4(1), 4343 (2014)CrossRef
6.
go back to reference Islam, M.R., Muthiah, S., Adhikari, B., Prakash, B.A., Ramakrishnan, N.: DeepDiffuse: predicting the ‘who’ and ‘when’ in cascades. In: ICDM, pp. 1055–1060. IEEE (2018) Islam, M.R., Muthiah, S., Adhikari, B., Prakash, B.A., Ramakrishnan, N.: DeepDiffuse: predicting the ‘who’ and ‘when’ in cascades. In: ICDM, pp. 1055–1060. IEEE (2018)
7.
go back to reference Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network, pp. 137–146. ACM (2003) Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network, pp. 137–146. ACM (2003)
8.
go back to reference Lu, J., Batra, D., Parikh, D., Lee, S.: ViLBERT: pretraining task-agnostic visiolinguistic representations for vision-and-language tasks. In: Advances in Neural Information Processing Systems, vol. 32 (2019) Lu, J., Batra, D., Parikh, D., Lee, S.: ViLBERT: pretraining task-agnostic visiolinguistic representations for vision-and-language tasks. In: Advances in Neural Information Processing Systems, vol. 32 (2019)
9.
go back to reference Sankar, A., Zhang, X., Krishnan, A., Han, J.: Inf-VAE: a variational autoencoder framework to integrate homophily and influence in diffusion prediction. In: WSDM, pp. 510–518 (2020) Sankar, A., Zhang, X., Krishnan, A., Han, J.: Inf-VAE: a variational autoencoder framework to integrate homophily and influence in diffusion prediction. In: WSDM, pp. 510–518 (2020)
10.
go back to reference Sun, L., Rao, Y., Zhang, X., Lan, Y., Yu, S.: MS-HGAT: memory-enhanced sequential hypergraph attention network for information diffusion prediction. In: AAAI, pp. 4156–4164 (2022) Sun, L., Rao, Y., Zhang, X., Lan, Y., Yu, S.: MS-HGAT: memory-enhanced sequential hypergraph attention network for information diffusion prediction. In: AAAI, pp. 4156–4164 (2022)
11.
go back to reference Tsur, O., Rappoport, A.: What’s in a hashtag? Content based prediction of the spread of ideas in microblogging communities. In: WSDM, pp. 643–652 (2012) Tsur, O., Rappoport, A.: What’s in a hashtag? Content based prediction of the spread of ideas in microblogging communities. In: WSDM, pp. 643–652 (2012)
12.
go back to reference Vosoughi, S., Roy, D., Aral, S.: The spread of true and false news online. Science 359(6380), 1146–1151 (2018) Vosoughi, S., Roy, D., Aral, S.: The spread of true and false news online. Science 359(6380), 1146–1151 (2018)
13.
go back to reference Wang, J., Zheng, V.W., Liu, Z., Chang, K.C.C.: Topological recurrent neural network for diffusion prediction. In: ICDM, pp. 475–484. IEEE (2017) Wang, J., Zheng, V.W., Liu, Z., Chang, K.C.C.: Topological recurrent neural network for diffusion prediction. In: ICDM, pp. 475–484. IEEE (2017)
14.
go back to reference Wang, J., Ding, K., Hong, L., Liu, H., Caverlee, J.: Next-item recommendation with sequential hypergraphs. In: SIGIR, pp. 1101–1110 (2020) Wang, J., Ding, K., Hong, L., Liu, H., Caverlee, J.: Next-item recommendation with sequential hypergraphs. In: SIGIR, pp. 1101–1110 (2020)
15.
go back to reference Wang, J., Zhang, Y., Wang, L., Hu, Y., Piao, X., Yin, B.: Multitask hypergraph convolutional networks: a heterogeneous traffic prediction framework. IEEE TITS 23(10), 18557–18567 (2022) Wang, J., Zhang, Y., Wang, L., Hu, Y., Piao, X., Yin, B.: Multitask hypergraph convolutional networks: a heterogeneous traffic prediction framework. IEEE TITS 23(10), 18557–18567 (2022)
16.
go back to reference Wang, P., Yang, S., Liu, Y., Wang, Z., Li, P.: Equivariant hypergraph diffusion neural operators. arXiv preprint arXiv:2207.06680 (2022) Wang, P., Yang, S., Liu, Y., Wang, Z., Li, P.: Equivariant hypergraph diffusion neural operators. arXiv preprint arXiv:​2207.​06680 (2022)
17.
go back to reference Wang, Y., Shen, H., Liu, S., Gao, J., Cheng, X.: Cascade dynamics modeling with attention-based recurrent neural network. In: IJCAI. vol. 17, pp. 2985–2991 (2017) Wang, Y., Shen, H., Liu, S., Gao, J., Cheng, X.: Cascade dynamics modeling with attention-based recurrent neural network. In: IJCAI. vol. 17, pp. 2985–2991 (2017)
18.
go back to reference Wang, Z., Chen, C., Li, W.: A sequential neural information diffusion model with structure attention. In: CIKM, pp. 1795–1798 (2018) Wang, Z., Chen, C., Li, W.: A sequential neural information diffusion model with structure attention. In: CIKM, pp. 1795–1798 (2018)
19.
go back to reference Wu, Q., Gao, Y., Gao, X., Weng, P., Chen, G.: Dual sequential prediction models linking sequential recommendation and information dissemination. In: ACM SIGKDD, pp. 447–457 (2019) Wu, Q., Gao, Y., Gao, X., Weng, P., Chen, G.: Dual sequential prediction models linking sequential recommendation and information dissemination. In: ACM SIGKDD, pp. 447–457 (2019)
20.
go back to reference Yadati, N., Nimishakavi, M., Yadav, P., Nitin, V., Louis, A., Talukdar, P.: HyperGCN: a new method for training graph convolutional networks on hypergraphs. In: Advances in Neural Information Processing Systems, vol. 32 (2019) Yadati, N., Nimishakavi, M., Yadav, P., Nitin, V., Louis, A., Talukdar, P.: HyperGCN: a new method for training graph convolutional networks on hypergraphs. In: Advances in Neural Information Processing Systems, vol. 32 (2019)
21.
go back to reference Yang, C., Sun, M., Liu, H., Han, S., Liu, Z., Luan, H.: Neural Diffusion Model for Microscopic Cascade Prediction (2018) Yang, C., Sun, M., Liu, H., Han, S., Liu, Z., Luan, H.: Neural Diffusion Model for Microscopic Cascade Prediction (2018)
22.
go back to reference Yang, C., et al.: Full-scale information diffusion prediction with reinforced recurrent networks. IEEE TNNLS 34(5), 2271–2283 (2021) Yang, C., et al.: Full-scale information diffusion prediction with reinforced recurrent networks. IEEE TNNLS 34(5), 2271–2283 (2021)
23.
go back to reference Yuan, C., Li, J., Zhou, W., Lu, Y., Zhang, X., Hu, S.: DyHGCN: a dynamic heterogeneous graph convolutional network to learn users’ dynamic preferences for information diffusion prediction. In: Hutter, F., Kersting, K., Lijffijt, J., Valera, I. (eds.) ECML PKDD 2020. LNCS (LNAI), vol. 12459, pp. 347–363. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67664-3_21CrossRef Yuan, C., Li, J., Zhou, W., Lu, Y., Zhang, X., Hu, S.: DyHGCN: a dynamic heterogeneous graph convolutional network to learn users’ dynamic preferences for information diffusion prediction. In: Hutter, F., Kersting, K., Lijffijt, J., Valera, I. (eds.) ECML PKDD 2020. LNCS (LNAI), vol. 12459, pp. 347–363. Springer, Cham (2021). https://​doi.​org/​10.​1007/​978-3-030-67664-3_​21CrossRef
24.
go back to reference Zhang, R., Zou, Y., Ma, J.: Hyper-SAGNN: a self-attention based graph neural network for hypergraphs. arXiv preprint arXiv:1911.02613 (2019) Zhang, R., Zou, Y., Ma, J.: Hyper-SAGNN: a self-attention based graph neural network for hypergraphs. arXiv preprint arXiv:​1911.​02613 (2019)
25.
go back to reference Zhong, E., Fan, W., Wang, J., Xiao, L., Li, Y.: ComSoc: adaptive transfer of user behaviors over composite social network. In: ACM SIGKDD, pp. 696–704 (2012) Zhong, E., Fan, W., Wang, J., Xiao, L., Li, Y.: ComSoc: adaptive transfer of user behaviors over composite social network. In: ACM SIGKDD, pp. 696–704 (2012)
Metadata
Title
Equivariant Diffusion-Based Sequential Hypergraph Neural Networks with Co-attention Fusion for Information Diffusion Prediction
Authors
Ye Lu
Ji Zhang
Ting Yu
Gaoming Yang
Copyright Year
2025
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-96-0573-6_6

Premium Partner