Skip to main content
Top

2024 | OriginalPaper | Chapter

3. Ergonomics of the Thermal Environment. Human Body and Clothes

Author : Kristian Fabbri

Published in: Thermal Comfort Perception

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The Human Body constantly exchanges energy and mass with the environment, to ensure its own metabolism. The study of the physiology of the human body used to determine the terms of the Heat Balance Equation. This chapter describes the indexes that are used to determine: the Heat Balance Equation, the Clothes resistance and how the human body perceives the Indoor Air Quality.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Arens E, Zhang H, Huizenga C (2006) Partial and whole-body thermal sensation and comfort, part I: uniform environmental conditions. J Therm Biol 31:53–59CrossRef Arens E, Zhang H, Huizenga C (2006) Partial and whole-body thermal sensation and comfort, part I: uniform environmental conditions. J Therm Biol 31:53–59CrossRef
go back to reference ASHRAE (1993) Physiological principles and thermal comfort. In: ASHRAE handbook-fundamentals. American Society of Heating, Refrigeration and Air-Conditioning Engineers, Atlanta, GA ASHRAE (1993) Physiological principles and thermal comfort. In: ASHRAE handbook-fundamentals. American Society of Heating, Refrigeration and Air-Conditioning Engineers, Atlanta, GA
go back to reference ASHRAE 55 (2004) Thermal environmental conditions for human occupancy. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta ASHRAE 55 (2004) Thermal environmental conditions for human occupancy. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta
go back to reference Azer NZ, Hsu S (1977) The prediction of thermal sensation from a simple thermoregulatory model. ASHRAE Trans 83(Part 1) Azer NZ, Hsu S (1977) The prediction of thermal sensation from a simple thermoregulatory model. ASHRAE Trans 83(Part 1)
go back to reference Bartal I, Banhidi L, Garbai L (2012) Analysis of the static thermal comfort equation. Energy Build 49:188–191CrossRef Bartal I, Banhidi L, Garbai L (2012) Analysis of the static thermal comfort equation. Energy Build 49:188–191CrossRef
go back to reference Bellone E (2011) Qualcosa là fuori. Come il cervello crea la realtà (Something out there. How the brain creates reality). Codice Edizioni, Torino Bellone E (2011) Qualcosa là fuori. Come il cervello crea la realtà (Something out there. How the brain creates reality). Codice Edizioni, Torino
go back to reference Bluyssen PM (2009) The indoor environment handbook, how to make buildings healthy and comfortable. Earthscan, London Bluyssen PM (2009) The indoor environment handbook, how to make buildings healthy and comfortable. Earthscan, London
go back to reference Butera FM (1998) Chapter 3—principles of thermal comfort. Renew Sustain Energy Rev 2:39–66 Butera FM (1998) Chapter 3—principles of thermal comfort. Renew Sustain Energy Rev 2:39–66
go back to reference CEN prENV (1752) Ventilation for buildings design criteria for the indoor environment CEN prENV (1752) Ventilation for buildings design criteria for the indoor environment
go back to reference Cheng Y, Niu J, Gao N (2012) Thermal comfort models: a review and numerical investigation. Build Environ 47:13–22CrossRef Cheng Y, Niu J, Gao N (2012) Thermal comfort models: a review and numerical investigation. Build Environ 47:13–22CrossRef
go back to reference de Dear RJ, Ring JW (1990) Human subjective experience of ambient temperature step-changes: experimental results compared to the predictions of a numerical model. Indoor Air de Dear RJ, Ring JW (1990) Human subjective experience of ambient temperature step-changes: experimental results compared to the predictions of a numerical model. Indoor Air
go back to reference de Dear R, Ring JW, Fanger PO (1993) Thermal sensation resulting from sudden ambient temperature changes. Indoor Air 3:181–192CrossRef de Dear R, Ring JW, Fanger PO (1993) Thermal sensation resulting from sudden ambient temperature changes. Indoor Air 3:181–192CrossRef
go back to reference EN 13779 Ventilation for non-residential buildings—performance requirements for ventilation and room-conditioning systems EN 13779 Ventilation for non-residential buildings—performance requirements for ventilation and room-conditioning systems
go back to reference EN 15251 Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics EN 15251 Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics
go back to reference Fanger PO (1970) Thermal comfort. Analysis and application in environmental engineering. McGraw-Hill Book Company, New York Fanger PO (1970) Thermal comfort. Analysis and application in environmental engineering. McGraw-Hill Book Company, New York
go back to reference Fanger PO (1988) Introduction of the olf and the decipol units to quantify air pollution perceived by humans indoors and outdoors. Energy Build 12(1):1–6CrossRef Fanger PO (1988) Introduction of the olf and the decipol units to quantify air pollution perceived by humans indoors and outdoors. Energy Build 12(1):1–6CrossRef
go back to reference Fanger PO, Lauridsen J, Bluyssen P, Clausen G (1988) Air pollution sources in offices and assembly halls, quantified by the olf unit. Energy Build 12(1):7–19CrossRef Fanger PO, Lauridsen J, Bluyssen P, Clausen G (1988) Air pollution sources in offices and assembly halls, quantified by the olf unit. Energy Build 12(1):7–19CrossRef
go back to reference Fiala D, Kevin JL, Stohrer M (1999) A computer model of human thermoregulation for a wide range of environmental conditions: the passive system. J Appl Physiol 87:1957–1972CrossRef Fiala D, Kevin JL, Stohrer M (1999) A computer model of human thermoregulation for a wide range of environmental conditions: the passive system. J Appl Physiol 87:1957–1972CrossRef
go back to reference Fiala D, Psikuta A, Jendritzky G (2010) Physiological modeling for technical, clinical and research applications. Front Biosci S2:939–968CrossRef Fiala D, Psikuta A, Jendritzky G (2010) Physiological modeling for technical, clinical and research applications. Front Biosci S2:939–968CrossRef
go back to reference Frontczak M, Wargocki P (2011) Literature survey on how different factors influence human comfort in indoor environments. Build Environ 46:922–937CrossRef Frontczak M, Wargocki P (2011) Literature survey on how different factors influence human comfort in indoor environments. Build Environ 46:922–937CrossRef
go back to reference Gagge AP, Stolwijk JAJ, Nishi Y (1971) An effective temperature scale based on a simple model of human physiological regulatory response. ASHRAE Trans 77(1):247–262 Gagge AP, Stolwijk JAJ, Nishi Y (1971) An effective temperature scale based on a simple model of human physiological regulatory response. ASHRAE Trans 77(1):247–262
go back to reference Givoni B, Goldman R (1971) Predicting metabolic energy cost. J Appl Physiol 30:429–433CrossRef Givoni B, Goldman R (1971) Predicting metabolic energy cost. J Appl Physiol 30:429–433CrossRef
go back to reference Glossary of terms for thermal physiology (1987) Pflugers Archiv 410:567–587 Glossary of terms for thermal physiology (1987) Pflugers Archiv 410:567–587
go back to reference Guan Y, Hosni MH, Jones BW, Gielda TP (2003) Investigation of human thermal comfort under highly transient conditions for automobile applications—part 1: experimental design and human subject testing implementation. ASHRAE Trans 109(2):885–897 Guan Y, Hosni MH, Jones BW, Gielda TP (2003) Investigation of human thermal comfort under highly transient conditions for automobile applications—part 1: experimental design and human subject testing implementation. ASHRAE Trans 109(2):885–897
go back to reference Havenith G, Holmèeer I, Parson K (2002) Personal factors in thermal comfort assessment: clothing proprieties and metabolic heat production. Energy Build 34:581–591CrossRef Havenith G, Holmèeer I, Parson K (2002) Personal factors in thermal comfort assessment: clothing proprieties and metabolic heat production. Energy Build 34:581–591CrossRef
go back to reference Herringot W, Gagge AP (1937) Physiological reactions to environmental temperature. Am J Physiol 120:1–22CrossRef Herringot W, Gagge AP (1937) Physiological reactions to environmental temperature. Am J Physiol 120:1–22CrossRef
go back to reference Huizenga C, Zhang H, Arens E (2001) A model of human physiology and comfort for assessing complex thermal environments. Build Environ 36:691–699CrossRef Huizenga C, Zhang H, Arens E (2001) A model of human physiology and comfort for assessing complex thermal environments. Build Environ 36:691–699CrossRef
go back to reference ISO 11339:2001 Ergonomics of the thermal environment—principles and application of relevant international standards ISO 11339:2001 Ergonomics of the thermal environment—principles and application of relevant international standards
go back to reference ISO 11399 Ergonomics of the thermal environment—principles and application of relevant international standards ISO 11399 Ergonomics of the thermal environment—principles and application of relevant international standards
go back to reference ISO 13731 Ergonomics of the thermal environment—vocabulary and symbols ISO 13731 Ergonomics of the thermal environment—vocabulary and symbols
go back to reference ISO 26800 Ergonomics. General approach, principles and concepts ISO 26800 Ergonomics. General approach, principles and concepts
go back to reference ISO 28802:2012 Ergonomics of the physical environment—assessment of environments by means of an environmental survey involving physical measurements of the environment and subjective responses of people ISO 28802:2012 Ergonomics of the physical environment—assessment of environments by means of an environmental survey involving physical measurements of the environment and subjective responses of people
go back to reference ISO 28803:2012 Ergonomics of the physical environment—application of international standards to people with special requirement ISO 28803:2012 Ergonomics of the physical environment—application of international standards to people with special requirement
go back to reference ISO 8996 Ergonomics of the thermal environment—determination of metabolic rate ISO 8996 Ergonomics of the thermal environment—determination of metabolic rate
go back to reference ISO 9886 Ergonomics—evaluation of thermal strain by physiological measurements ISO 9886 Ergonomics—evaluation of thermal strain by physiological measurements
go back to reference ISO 9920 Ergonomics of the thermal environment—estimation of thermal insulation and water vapour resistance of a clothing ensemble ISO 9920 Ergonomics of the thermal environment—estimation of thermal insulation and water vapour resistance of a clothing ensemble
go back to reference Jones B, Ogawa Y (1992) Transient interaction between the human body and the thermal environment. ASHRAE Trans 98:189–195 Jones B, Ogawa Y (1992) Transient interaction between the human body and the thermal environment. ASHRAE Trans 98:189–195
go back to reference Kim CS, McCullough EA (2000) Static and dynamic insulation values for cold weather protective clothing. In: Nelson CN, Henry NW (eds) Performance of protective clothing: issues and priorities for the 21st century, vol 7. ASTM STP 1386. ASTM, Conshohocken, PA, pp 233–247 Kim CS, McCullough EA (2000) Static and dynamic insulation values for cold weather protective clothing. In: Nelson CN, Henry NW (eds) Performance of protective clothing: issues and priorities for the 21st century, vol 7. ASTM STP 1386. ASTM, Conshohocken, PA, pp 233–247
go back to reference Kosonen R, Tan F (2004) The effect of perceived indoor air quality on productivity loss. Energy Build 36(10):981–986CrossRef Kosonen R, Tan F (2004) The effect of perceived indoor air quality on productivity loss. Energy Build 36(10):981–986CrossRef
go back to reference McCullough EA, Jones BW (1984) A comprehensive data base for estimating clothing insulation. IER technical report 84-01. Institute for Environmental Research, p 1 McCullough EA, Jones BW (1984) A comprehensive data base for estimating clothing insulation. IER technical report 84-01. Institute for Environmental Research, p 1
go back to reference Nilsson HO, Holmér I (2003) Comfort climate evaluation with thermal manikin methods and computer simulation models. Indoor Air 13:28–37CrossRef Nilsson HO, Holmér I (2003) Comfort climate evaluation with thermal manikin methods and computer simulation models. Indoor Air 13:28–37CrossRef
go back to reference Poincarè H (1905) London and Newcastle-on-Tyne. The Walter Scott Publishing Co., LTD, New York Poincarè H (1905) London and Newcastle-on-Tyne. The Walter Scott Publishing Co., LTD, New York
go back to reference Schellen L, Loomans MGLC, Kingma BRM, de Wit MH, Frijns AJH, van Marken Lichtenbelt WD (2013) The use of a thermophysiological model in the built environment to predict thermal sensation. Coupling with the indoor environment and thermal sensation. Build Environ 59:10–22 Schellen L, Loomans MGLC, Kingma BRM, de Wit MH, Frijns AJH, van Marken Lichtenbelt WD (2013) The use of a thermophysiological model in the built environment to predict thermal sensation. Coupling with the indoor environment and thermal sensation. Build Environ 59:10–22
go back to reference Steven SS (1957) On the psycho-physical law. Psychol Rev 64:153–181 Steven SS (1957) On the psycho-physical law. Psychol Rev 64:153–181
go back to reference van Marken Lichtenbelt WD, Frijns AJH, van Ooijen MJ, Fiala D, Kester AM, van Steenhoven AA (2007) Validation of an individualised model of human thermoregulation for predicting responses to cold air. Int J Biometeorol 51:169–179 van Marken Lichtenbelt WD, Frijns AJH, van Ooijen MJ, Fiala D, Kester AM, van Steenhoven AA (2007) Validation of an individualised model of human thermoregulation for predicting responses to cold air. Int J Biometeorol 51:169–179
go back to reference WHO Regional Office for Europe (2011) Methods for monitoring indoor air quality in schools. World Health Organization WHO Regional Office for Europe (2011) Methods for monitoring indoor air quality in schools. World Health Organization
go back to reference World Health Organisation (WHO) (1999) Basic documents, 42nd edn. World Health Organisation, Geneva World Health Organisation (WHO) (1999) Basic documents, 42nd edn. World Health Organisation, Geneva
go back to reference Yao Y, Lian Z, Liu W, Jiang C, Liu Y, Lu H (2009) Heart rate variation and electroencephalograph—the potential physiological factors for thermal comfort study. Indoor Air 19:93–101CrossRef Yao Y, Lian Z, Liu W, Jiang C, Liu Y, Lu H (2009) Heart rate variation and electroencephalograph—the potential physiological factors for thermal comfort study. Indoor Air 19:93–101CrossRef
Metadata
Title
Ergonomics of the Thermal Environment. Human Body and Clothes
Author
Kristian Fabbri
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-52610-7_3