1 Introduction
2 ESG information processing
3 Advancement in Nature Language Processing: the BERT model
4 Literature review and hypothesis development
5 Data description
5.1 The uniqueness of the employed ESG news dataset
N/E | Source | Size | # of stocks | Period | |
---|---|---|---|---|---|
This study | News | Eikon | 84,835 | 13,327 | 2019–2021 |
Capelle 2019 | News | Covalence | 33,000 | 100 | 2002–2008 |
Cui 2020 | News | RavenPack | 82,435 | 1500 | 2008–2018 |
Krueger 2015 | Events | MSCI KLD | 2116 | 745 | 2001–2007 |
Derrien 2021 | Events | RepRisk | 76,538 | 8054 | 2008–2019 |
Glossner 2021 | Events | RepRisk | 70,735 | 2900 | 2007–2017 |
Gantchev 2022 | Events | RepRisk | 37,805 | N.A. | 2007–2016 |
5.2 Building a comprehensive ESG news dataset
5.3 Identifying and eliminating fuzzy duplicate ESG news
Date | Company | ESG news title | Cosine similarity |
---|---|---|---|
2019-05-13 14:41:11 | Apple | CBOE Holdings Inc. – US Supreme Court Has Ruled Against Apple In App Store Antitrust Dispute | Base\({}^{1}\) |
2019-05-13 23:12:02 | Apple | iPhone owners can sue Apple over its apps, US Supreme Court decides Customers argue that company’s control over the App Store is unfair | 0.8517\({}^{2}\) |
2019-11-21 13:58:04 | Microsoft | Vattenfall and Microsoft pilot world’s first hourly matching of renewable energy | Base |
2019-11-22 17:19:33 | Microsoft | Sweden : Vattenfall and Microsoft pilot world’s first hourly matching (24/7) of renewable energy | 0.8535 |
2020-09-04 08:00:00 | Daimler | Daimler AG joins forces with terre des hommes and the responsible mica initiative to improve mica supply chains and eliminate child labour | Base |
2020-09-09 13:04:16 | Daimler | Daimler collaborates with terre des hommes and responsible mica initiative to improve mica supply chains and eliminate child labour | 0.9723 |
5.4 Sentiment classification with fine-tuned BERT model
BERT model I | BERT model II | BERT model III | |
---|---|---|---|
Description | Distinguish between company news and non-company news in general news sample | Distinguish between company ESG news and non-ESG news | Identify ESG news sentiment (negative, neutral, positive) |
Data | 20,000 non-company news items from the GDELT Event Database and 20,000 company news items from Thomson Reuters Eikon | 20,000 company ESG news items and 20,000 company non-ESG news items from Thomson Reuters Eikon | 50,332 ESG news items extracted from the GDELT GEG database with the help of BERT models I and II, in which 5667 are labelled as negative ESG news, 29,862 as neutral ESG news and the rest 14,803 as positive ESG news |
Accuracy rate\({}^{1}\) | 99% | 99% | 81% |
F1 score\({}^{2}\) | 99%, 99% | 99%, 99% | 66%, 84%, 79% |
Max. length | 128 word pieces | 512 word pieces | 512 word pieces |
Model variant | RoBERTa | RoBERTa | RoBERTa |
Key parameters | training ratio 0.8\({}^{3}\), training epoch 3, learning rate \(2\times 10^{-5}\), batch size 8 |
Date | Company | ESG news text | Sentiment |
---|---|---|---|
2019-06-05 07:35:29 | BMW | As it develops its plans for the mobility of the future, the BMW Group is increasingly focusing on co-operations to help make next-level electrification technology more widely available to customers by the start of the coming decade… | Positive |
2019-09-14 20:19:16 | BMW | BERLIN, Sept 14 (Reuters) – BMW’s engine development and purchasing expert, Markus Duesmann, is set to become the CEO of Volkswagen’s Audi premium brand…. | Neutral |
2020-04-07 16:17:54 | BMW | The law firms of Waddell Phillips Professional Corporation and Podrebarac Barristers Professional Corporation announced today that the Ontario Superior Court of Justice has certified a national class action against luxury automaker Bayerische Motoren Werke AG…. | Negative |
2020-03-24 15:26:23 | Dow, Inc | Mar 24, 2020. Dow Inc. introduced two innovations that simplify the formulation of water-based, high temperature-resistant industrial coatings… | Positive |
2020-06-17 12:35:54 | Dow, Inc | Jun 17, 2020. Dow Inc. inked a joint development deal with Shell to speed up the development of technology that can electrify ethylene steam crackers…. | Neutral |
2020-05-21 03:06:51 | Dow, Inc | Catastrophic flooding triggered by dam failures in Michigan could potentially release toxic pollution from a site contaminated by the industrial giant Dow Chemical.Dow’s facility in Midland, Michigan, where the company is headquartered along the Tittabawassee River, manufactured chlorine-based products beginning in the early 1900s… | Negative |
5.5 Basic descriptive statistics
Obs. | % | Stocks | % | Obs. | % | Stocks | % | ||
---|---|---|---|---|---|---|---|---|---|
Continent | |||||||||
America | 45,688 | 53.86 | 5085 | 38.16 | Consumer Discretionary | 8371 | 9.87 | 1406 | 10.55 |
Europe | 22,926 | 27.02 | 3387 | 25.41 | Consumer Staples | 4129 | 4.87 | 666 | 5.00 |
Asia | 13,269 | 15.64 | 4033 | 30.26 | Health Care | 7137 | 8.41 | 1486 | 11.15 |
Oceania | 2275 | 2.68 | 563 | 4.22 | Financials | 9499 | 11.20 | 1527 | 11.46 |
Africa | 677 | 0.80 | 259 | 1.94 | Information Technology | 10,077 | 11.88 | 1457 | 10.93 |
Communication Services | 3521 | 4.15 | 606 | 4.55 | |||||
Sector | Utilities | 7038 | 8.30 | 406 | 3.05 | ||||
Energy | 6394 | 7.54 | 742 | 5.57 | Real Estate | 2561 | 3.02 | 746 | 5.62 |
Materials | 9853 | 11.61 | 1701 | 12.76 | None\({}^{1}\) | 1092 | 1.29 | 442 | 3.32 |
Industrials | 15,161 | 17.87 | 2142 | 16.07 |
Obs. | Mean | Std. | Min | Median | Max | |
---|---|---|---|---|---|---|
asset\({}^{1}\) (in million USD) | 82,571 | 69,700 | 248,000 | 0.01 | 6020 | 4,320,000 |
esg\({}^{1}\) | 50,722 | 59.08 | 21.51 | 0.92 | 63.15 | 94.47 |
num_news\({}^{2}\) | 84,835 | 32.00 | 41.53 | 1 | 16 | 302 |
Continent | Obs. | Negative | % | Neutral | % | Positive | % |
---|---|---|---|---|---|---|---|
America | 45,688 | 2147 | 4.70 | 23,171 | 50.72 | 20,370 | 44.59 |
Europe | 22,926 | 854 | 3.73 | 11,576 | 50.49 | 10,496 | 45.78 |
Asia | 13,269 | 828 | 6.24 | 6711 | 50.58 | 5730 | 43.18 |
Oceania | 2275 | 355 | 15.60 | 1265 | 55.60 | 655 | 28.79 |
Africa | 677 | 37 | 5.47 | 479 | 70.75 | 161 | 23.78 |
Total | 84,835 | 4221 | 4.98 | 43,202 | 50.92 | 37,412 | 44.10 |
6 Empirical methodology
6.1 Event study and discussion of confounding events
6.2 Regressions
7 Results
7.1 Event study results from the overall sample
Group | Obs. | Mean (%) | S.D. (%) | \(t_{\tau}\) | CI (%) | Min (%) | Med (%) | Max (%) |
---|---|---|---|---|---|---|---|---|
\(\textit{ar}_{0}\) | ||||||||
Positive | 37,412 | 0.31 \({}^{***}\) | 4.30 | 8.36 | (0.21, 0.41) | \(-\)62.65 | 0.05 | 165.16 |
Neutral | 43,202 | 0.20 \({}^{***}\) | 6.96 | 3.02 | (0.03, 0.37) | \(-\)152.95 | 0.04 | 262.61 |
Negative | 4221 | \(-\)0.75 \({}^{***}\) | 7.03 | \(-\)4.25 | \((-1.20,-0.30)\) | \(-\)119.23 | \(-\)0.19 | 53.32 |
\(\textit{CAR}_{1}\) | ||||||||
Positive | 37,412 | 1.17 \({}^{***}\) | 14.99 | 11.44 | (0.90, 1.43) | \(-\)173.88 | 0.41 | 225.16 |
Neutral | 43,202 | 0.87 \({}^{***}\) | 20.14 | 5.24 | (0.44, 1.30) | \(-\)375.77 | 0.27 | 237.69 |
Negative | 4221 | \(-\)1.28 \({}^{***}\) | 21.89 | \(-\)3.24 | \((-2.30,-0.26)\) | \(-\)341.51 | \(-\)0.63 | 154.03 |
\(\textit{CAR}_{2}\) | ||||||||
Positive | 37,412 | 1.24 \({}^{***}\) | 15.64 | 9.36 | (0.90, 1.58) | \(-\)196.96 | 0.46 | 242.88 |
Neutral | 43,202 | 0.97 \({}^{***}\) | 20.87 | 4.24 | (0.38, 1.56) | \(-\)365.50 | 0.28 | 215.70 |
Negative | 4221 | \(-\)1.26 \({}^{***}\) | 22.66 | \(-\)2.72 | \((-2.45,-0.07)\) | \(-\)358.13 | \(-\)0.54 | 135.72 |
\(\textit{CAR}_{5}\) | ||||||||
Positive | 37,412 | 0.87 \({}^{***}\) | 11.34 | 3.73 | (0.27, 1.47) | \(-\)212.76 | 0.26 | 188.84 |
Neutral | 43,202 | 0.51 | 16.28 | 1.28 | \((-0.52,1.54)\) | \(-\)361.99 | 0.10 | 231.45 |
Negative | 4221 | \(-\)1.42 \({}^{**}\) | 19.80 | \(-\)2.26 | \((-3.04,0.20)\) | \(-\)414.32 | \(-\)0.53 | 155.64 |
\(\textit{CAR}_{10}\) | ||||||||
Positive | 37,412 | 1.24 \({}^{***}\) | 15.64 | 2.89 | (0.13, 2.35) | \(-\)196.96 | 0.46 | 242.88 |
Neutral | 43,202 | 0.97 | 20.87 | 1.53 | \((-0.66,2.60)\) | \(-\)365.50 | 0.28 | 215.70 |
Negative | 4211 | \(-\)1.26 | 22.66 | \(-\)1.51 | \((-3.40,0.88)\) | \(-\)358.13 | \(-\)0.54 | 135.72 |
7.2 Event study results from the America subsample
Group | Obs. | Mean (%) | S.D. (%) | \(t_{\tau}\) | CI (%) | Min (%) | Med (%) | Max (%) |
---|---|---|---|---|---|---|---|---|
\(\textit{ar}_{0}\) | ||||||||
Positive | 20,370 | 0.37\({}^{***}\) | 4.84 | 6.45 | (0.22, 0.52) | \(-\)62.65 | 0.08 | 165.16 |
Neutral | 23,171 | 0.21\({}^{*}\) | 8.05 | 1.92 | \((-0.01,0.49)\) | \(-\)152.95 | 0.04 | 262.61 |
Negative | 2147 | \(-\)1.01\({}^{***}\) | 8.00 | \(-\)3.70 | \((-1.71,-0.31)\) | \(-\)119.23 | \(-\)0.33 | 53.32 |
\(\textit{CAR}_{1}\) | ||||||||
Positive | 20,370 | 1.38\({}^{***}\) | 16.84 | 8.81 | (0.98, 1.78) | \(-\)149.62 | 0.46 | 216.51 |
Neutral | 23,171 | 0.88\({}^{***}\) | 22.64 | 3.28 | (0.19, 1.57) | \(-\)199.69 | 0.29 | 219.05 |
Negative | 2147 | \(-\)2.10\({}^{***}\) | 22.71 | \(-\)3.60 | \((-3.60,-0.60)\) | \(-\)188.76 | \(-\)1.11 | 154.03 |
\(\textit{CAR}_{2}\) | ||||||||
Positive | 20,370 | 1.46\({}^{***}\) | 17.48 | 7.19 | (0.94, 1.98) | \(-\)162.49 | 0.49 | 242.88 |
Neutral | 23,171 | 1.05\({}^{***}\) | 23.34 | 2.72 | (0.06, 2.04) | \(-\)190.68 | 0.33 | 215.70 |
Negative | 2147 | \(-\)2.07\({}^{***}\) | 23.80 | \(-\)2.92 | \((-3.90,-0.24)\) | \(-\)188.09 | \(-\)0.98 | 135.72 |
\(\textit{CAR}_{5}\) | ||||||||
Positive | 20,370 | 1.00\({}^{***}\) | 12.71 | 2.80 | (0.08, 1.92) | \(-\)122.81 | 0.30 | 188.84 |
Neutral | 23,171 | 0.40 | 18.19 | 0.59 | \((-1.35,2.15)\) | \(-\)199.82 | 0.11 | 231.45 |
Negative | 2147 | \(-\)2.14\({}^{**}\) | 20.06 | \(-\)2.22 | \((-4.62,0.34)\) | \(-\)199.82 | \(-\)0.85 | 155.64 |
\(\textit{CAR}_{10}\) | ||||||||
Positive | 20,370 | 1.46\({}^{**}\) | 17.48 | 2.20 | \((-0.25,3.17)\) | \(-\)162.49 | 0.49 | 242.88 |
Neutral | 23,171 | 1.05 | 23.34 | 1.01 | \((-1.63,3.73)\) | \(-\)190.68 | 0.33 | 215.70 |
Negative | 2147 | \(-\)2.07 | 23.80 | \(-\)1.49 | \((-5.65,1.51)\) | \(-\)188.09 | \(-\)0.98 | 135.72 |
7.3 Event study results from the Europe subsample
Group | Obs. | Mean (%) | S.D. (%) | \(t_{\tau}\) | CI (%) | Min (%) | Med (%) | Max (%) |
---|---|---|---|---|---|---|---|---|
\(\textit{ar}_{0}\) | ||||||||
Positive | 10,496 | 0.34\({}^{***}\) | 3.91 | 6.10 | (0.20, 0.48) | \(-\)60.78 | 0.06 | 142.26 |
Neutral | 11,576 | 0.19\({}^{**}\) | 5.79 | 2.23 | \((-0.03,0.41)\) | \(-\)143.91 | 0.05 | 90.93 |
Negative | 854 | \(-\)0.78%\({}^{**}\) | 6.33 | \(-\)2.46 | \((-1.60,0.04)\) | \(-\)61.96 | \(-\)0.16 | 21.55 |
\(\textit{CAR}_{1}\) | ||||||||
Positive | 10,496 | 1.16\({}^{***}\) | 12.40 | 8.72 | (0.82, 1.50) | \(-\)128.03 | 0.62 | 225.16 |
Neutral | 11,576 | 0.45\({}^{**}\) | 17.40 | 2.36 | \((-0.04,0.94)\) | \(-\)375.77 | 0.21 | 237.69 |
Negative | 854 | \(-\)1.82\({}^{**}\) | 24.98 | \(-\)1.96 | \((-4.21,0.57)\) | \(-\)341.51 | \(-\)0.23 | 83.19 |
\(\textit{CAR}_{2}\) | ||||||||
Positive | 10,496 | 1.25\({}^{***}\) | 12.96 | 8.19 | (0.86, 1.64) | \(-\)140.59 | 0.59 | 195.43 |
Neutral | 11,576 | 0.44\({}^{*}\) | 18.25 | 1.91 | \((-0.15,1.03)\) | \(-\)365.50 | 0.18 | 210.15 |
Negative | 854 | \(-\)1.54 | 25.87 | \(-\)1.51 | \((-4.17,1.09)\) | \(-\)358.13 | 0.10 | 87.04 |
\(\textit{CAR}_{5}\) | ||||||||
Positive | 10,496 | 0.83\({}^{***}\) | 9.43 | 4.44 | (0.35, 1.31) | \(-\)105.73 | 0.33 | 141.58 |
Neutral | 11,576 | 0.40 | 14.54 | 1.16 | \((-0.49,1.29)\) | \(-\)361.99 | 0.10 | 176.54 |
Negative | 854 | \(-\)2.13\({}^{*}\) | 24.90 | \(-\)1.75 | \((-5.26,1.00)\) | \(-\)414.32 | \(-\)0.14 | 70.40 |
\(\textit{CAR}_{10}\) | ||||||||
Positive | 10,496 | 1.25\({}^{***}\) | 12.96 | 3.73 | (0.39, 2.11) | \(-\)140.59 | 0.59 | 195.43 |
Neutral | 11,576 | 0.44 | 18.25 | 0.73 | \((-1.11,1.99)\) | \(-\)365.50 | 0.18 | 210.15 |
Negative | 854 | \(-\)1.54 | 25.87 | \(-\)1.09 | \((-5.18,2.10)\) | \(-\)358.13 | 0.10 | 87.04 |
7.4 Regression results
\(\textit{ar}_{0}\) | \(\textit{CAR}_{1}\) | \(\textit{CAR}_{2}\) | ||||
---|---|---|---|---|---|---|
(I) | (II) | (III) | (IV) | (V) | (VI) | |
H1/H2 | ||||||
sentiment | ||||||
negative | \(-\)0.0081\({}^{***}\) | \(-\)0.0383\({}^{**}\) | \(-\)0.0187\({}^{***}\) | \(-\)0.1484\({}^{**}\) | \(-\)0.0187\({}^{***}\) | \(-\)0.1572\({}^{***}\) |
(0.0017) | (0.0152) | (0.0055) | (0.0576) | (0.0053) | (0.0546) | |
positive | 0.0013\({}^{***}\) | 0.0159\({}^{***}\) | 0.0056\({}^{***}\) | 0.0364\({}^{**}\) | 0.0061\({}^{***}\) | 0.0346\({}^{*}\) |
(0.0004) | (0.0047) | (0.0017) | (0.0183) | (0.0018) | (0.0189) | |
H3 | ||||||
negative*esg | 0.0076\({}^{**}\) | 0.0327\({}^{**}\) | 0.0349\({}^{***}\) | |||
(0.0037) | (0.0139) | (0.0132) | ||||
positive*esg | \(-\)0.0037\({}^{***}\) | \(-\)0.0077\({}^{*}\) | \(-\)0.0071 | |||
(0.0011) | (0.0044) | (0.0045) | ||||
Controls | ||||||
esg | 0.0014\({}^{*}\) | 0.0028\({}^{**}\) | \(-\)0.0012 | 0.0007 | \(-\)0.0012 | 0.0004 |
(0.0007) | (0.0011) | (0.0032) | (0.0044) | (0.0033) | (0.0046) | |
asset | \(-\)0.0003 | \(-\)0.0003 | \(-\)0.0011 | \(-\)0.0012 | \(-\)0.0013 | \(-\)0.0014 |
(0.0002) | (0.0002) | (0.0008) | (0.0009) | (0.0009) | (0.0009) | |
num_news | \(-\)0.0003 | \(-\)0.0002 | \(-\)0.0011 | \(-\)0.0010 | \(-\)0.0008 | \(-\)0.0009 |
(0.0006) | (0.0006) | (0.0024) | (0.0025) | (0.0026) | (0.0028) | |
continent | ||||||
Africa | \(-\)0.0008 | \(-\)0.0010 | 0.0100 | 0.0096 | 0.0108 | 0.0103 |
(0.0025) | (0.0024) | (0.0120) | (0.0120) | (0.0136) | (0.0136) | |
Asia | 0.0003 | 0.0004 | 0.0013 | 0.0014 | 0.0014 | 0.0015 |
(0.0007) | (0.0007) | (0.0039) | (0.0039) | (0.0039) | (0.0040) | |
Europe | 0.0006 | 0.0007 | 0.0022 | 0.0025 | 0.0022 | 0.0025 |
(0.0005) | (0.0005) | (0.0020) | (0.0020) | (0.0021) | (0.0021) | |
Oceania | 0.0049\({}^{***}\) | 0.0044\({}^{***}\) | 0.0070 | 0.0052 | 0.0067 | 0.0048 |
(0.0013) | (0.0013) | (0.0056) | (0.0056) | (0.0057) | (0.0057) | |
sector | ||||||
communication_services | 0.0016 | 0.0017 | \(-\)0.0036 | \(-\)0.0032 | \(-\)0.0039 | \(-\)0.0034 |
(0.0016) | (0.0016) | (0.0050) | (0.0050) | (0.0053) | (0.0052) | |
consumer_discretionary | \(-\)0.0003 | \(-\)0.0004 | 0.0061 | 0.0061 | 0.0073 | 0.0073 |
(0.0008) | (0.0008) | (0.0054) | (0.0055) | (0.0054) | (0.0054) | |
consumer_staples | 0.0001 | 0.0001 | \(-\)0.0028 | \(-\)0.0027 | \(-\)0.0031 | \(-\)0.0030 |
(0.0008) | (0.0008) | (0.0031) | (0.0031) | (0.0033) | (0.0033) | |
energy | 0.0012 | 0.0014 | 0.0030 | 0.0033 | 0.0032 | 0.0034 |
(0.0011) | (0.0011) | (0.0049) | (0.0049) | (0.0051) | (0.0051) | |
financials | \(-\)0.0005 | \(-\)0.0005 | \(-\)0.0000 | \(-\)0.0002 | \(-\)0.0001 | \(-\)0.0003 |
(0.0009) | (0.0009) | (0.0050) | (0.0050) | (0.0051) | (0.0051) | |
health_care | \(-\)0.0041\({}^{***}\) | \(-\)0.0041\({}^{***}\) | \(-\)0.0070\({}^{*}\) | \(-\)0.0068 | \(-\)0.0083\({}^{*}\) | \(-\)0.0081\({}^{*}\) |
(0.0011) | (0.0011) | (0.0042) | (0.0044) | (0.0044) | (0.0045) | |
information_technology | \(-\)0.0023\({}^{**}\) | \(-\)0.0024\({}^{***}\) | \(-\)0.0148\({}^{***}\) | \(-\)0.0151\({}^{***}\) | \(-\)0.0157\({}^{***}\) | \(-\)0.0161\({}^{***}\) |
(0.0009) | (0.0009) | (0.0032) | (0.0032) | (0.0034) | (0.0034) | |
materials | \(-\)0.0012\({}^{*}\) | \(-\)0.0011\({}^{*}\) | 0.0037 | 0.0038 | 0.0028 | 0.0029 |
(0.0007) | (0.0007) | (0.0032) | (0.0032) | (0.0035) | (0.0035) | |
real_estate | 0.0001 | 0.0003 | \(-\)0.0074\({}^{*}\) | \(-\)0.0069 | \(-\)0.0086\({}^{*}\) | \(-\)0.0082\({}^{*}\) |
(0.0010) | (0.0010) | (0.0043) | (0.0043) | (0.0045) | (0.0045) | |
utilities | \(-\)0.0012\({}^{*}\) | \(-\)0.0012\({}^{*}\) | \(-\)0.0121\({}^{***}\) | \(-\)0.0120\({}^{***}\) | \(-\)0.0142\({}^{***}\) | \(-\)0.0141\({}^{***}\) |
(0.0007) | (0.0007) | (0.0032) | (0.0032) | (0.0035) | (0.0035) | |
_cons | 0.0005 | \(-\)0.0041 | 0.0333\({}^{*}\) | 0.0277 | 0.0394\({}^{**}\) | 0.0353\({}^{*}\) |
(0.0041) | (0.0052) | (0.0170) | (0.0201) | (0.0179) | (0.0213) | |
\(N\) | 50,532 | 50,532 | 50,532 | 50,532 | 50,532 | 50,532 |
F_Statistic | 4.81\({}^{***}\) | 4.47\({}^{***}\) | 6.09\({}^{***}\) | 5.81\({}^{***}\) | 6.33\({}^{***}\) | 5.95\({}^{***}\) |
R_Squared | 0.0040 | 0.0051 | 0.0046 | 0.0056 | 0.0049 | 0.0059 |
Adj_R_Squared | 0.0036 | 0.0046 | 0.0042 | 0.0052 | 0.0045 | 0.0055 |
\(\textit{ar}_{0}\) | \(\textit{CAR}_{1}\) | \(\textit{CAR}_{2}\) | ||||
---|---|---|---|---|---|---|
(I) | (II) | (III) | (IV) | (V) | (VI) | |
H1/H2 | ||||||
sentiment | ||||||
negative | \(-\)0.0092\({}^{***}\) | \(-\)0.0367\({}^{**}\) | \(-\)0.0263\({}^{***}\) | \(-\)0.1650\({}^{**}\) | \(-\)0.0264\({}^{***}\) | \(-\)0.1755\({}^{***}\) |
(0.0022) | (0.0176) | (0.0069) | (0.0683) | (0.0066) | (0.0638) | |
positive | 0.0023\({}^{***}\) | 0.0183\({}^{***}\) | 0.0066\({}^{**}\) | 0.0436\({}^{*}\) | 0.0069\({}^{**}\) | 0.0433\({}^{*}\) |
(0.0007) | (0.0062) | (0.0027) | (0.0239) | (0.0028) | (0.0245) | |
H3 | ||||||
negative*esg | 0.0072\({}^{*}\) | 0.0363\({}^{**}\) | 0.0390\({}^{**}\) | |||
(0.0043) | (0.0165) | (0.0156) | ||||
positive*esg | \(-\)0.0041\({}^{***}\) | \(-\)0.0095\({}^{*}\) | \(-\)0.0094 | |||
(0.0015) | (0.0057) | (0.0059) | ||||
Controls | ||||||
esg | 0.0016 | 0.0032\({}^{**}\) | \(-\)0.0028 | 0.0001 | \(-\)0.0032 | \(-\)0.0005 |
(0.0010) | (0.0015) | (0.0046) | (0.0063) | (0.0047) | (0.0065) | |
asset | \(-\)0.0005\({}^{*}\) | \(-\)0.0005\({}^{*}\) | \(-\)0.0015 | \(-\)0.0015 | \(-\)0.0019\({}^{*}\) | \(-\)0.0019\({}^{*}\) |
(0.0003) | (0.0003) | (0.0010) | (0.0010) | (0.0011) | (0.0011) | |
num_news | 0.0011\({}^{*}\) | 0.0011\({}^{*}\) | 0.0027 | 0.0024 | 0.0030 | 0.0028 |
(0.0006) | (0.0006) | (0.0035) | (0.0036) | (0.0038) | (0.0039) | |
sector | ||||||
communication_services | 0.0036 | 0.0036 | \(-\)0.0007 | \(-\)0.0004 | \(-\)0.0001 | 0.0003 |
(0.0026) | (0.0026) | (0.0070) | (0.0070) | (0.0077) | (0.0076) | |
consumer_discretionary | \(-\)0.0014 | \(-\)0.0014 | 0.0098 | 0.0096 | 0.0106 | 0.0105 |
(0.0012) | (0.0012) | (0.0092) | (0.0094) | (0.0091) | (0.0093) | |
consumer_staples | 0.0005 | 0.0006 | \(-\)0.0028 | \(-\)0.0025 | \(-\)0.0033 | \(-\)0.0031 |
(0.0012) | (0.0012) | (0.0047) | (0.0047) | (0.0051) | (0.0051) | |
energy | 0.0029 | 0.0030 | 0.0028 | 0.0031 | 0.0037 | 0.0039 |
(0.0019) | (0.0019) | (0.0083) | (0.0084) | (0.0087) | (0.0088) | |
financials | 0.0005 | 0.0005 | \(-\)0.0053 | \(-\)0.0054 | \(-\)0.0048 | \(-\)0.0049 |
(0.0011) | (0.0011) | (0.0048) | (0.0048) | (0.0050) | (0.0050) | |
health_care | \(-\)0.0043\({}^{***}\) | \(-\)0.0041\({}^{***}\) | \(-\)0.0035 | \(-\)0.0029 | \(-\)0.0043 | \(-\)0.0037 |
(0.0016) | (0.0016) | (0.0056) | (0.0056) | (0.0058) | (0.0058) | |
information_technology | \(-\)0.0023\({}^{*}\) | \(-\)0.0024\({}^{**}\) | \(-\)0.0193\({}^{***}\) | \(-\)0.0196\({}^{***}\) | \(-\)0.0208\({}^{***}\) | \(-\)0.0211\({}^{***}\) |
(0.0012) | (0.0012) | (0.0046) | (0.0046) | (0.0047) | (0.0047) | |
materials | \(-\)0.0007 | \(-\)0.0006 | 0.0014 | 0.0016 | \(-\)0.0004 | \(-\)0.0002 |
(0.0012) | (0.0012) | (0.0055) | (0.0055) | (0.0061) | (0.0061) | |
real_estate | 0.0003 | 0.0005 | \(-\)0.0128\({}^{**}\) | \(-\)0.0120\({}^{**}\) | \(-\)0.0154\({}^{**}\) | \(-\)0.0145\({}^{**}\) |
(0.0014) | (0.0014) | (0.0060) | (0.0060) | (0.0063) | (0.0063) | |
utilities | \(-\)0.0014 | \(-\)0.0014 | \(-\)0.0181\({}^{***}\) | \(-\)0.0180\({}^{***}\) | \(-\)0.0210\({}^{***}\) | \(-\)0.0209\({}^{***}\) |
(0.0012) | (0.0012) | (0.0051) | (0.0051) | (0.0055) | (0.0055) | |
_cons | 0.0043 | \(-\)0.0015 | 0.0486\({}^{**}\) | 0.0394 | 0.0596\({}^{***}\) | 0.0512\({}^{*}\) |
(0.0055) | (0.0071) | (0.0204) | (0.0253) | (0.0218) | (0.0270) | |
\(N\) | 27,613 | 27,613 | 27,613 | 27,613 | 27,613 | 27,613 |
F_Statistic | 3.89\({}^{***}\) | 3.65\({}^{***}\) | 6.72\({}^{***}\) | 6.40\({}^{***}\) | 6.88\({}^{***}\) | 6.50\({}^{***}\) |
R_Squared | 0.0046 | 0.0057 | 0.0064 | 0.0076 | 0.0069 | 0.0082 |
Adj_R_Squared | 0.0041 | 0.0050 | 0.0058 | 0.0070 | 0.0064 | 0.0076 |
\(\textit{ar}_{0}\) | \(\textit{CAR}_{1}\) | \(\textit{CAR}_{2}\) | ||||
---|---|---|---|---|---|---|
(I) | (II) | (III) | (IV) | (V) | (VI) | |
H1/H2 | ||||||
sentiment | ||||||
negative | \(-\)0.0081\({}^{**}\) | \(-\)0.0708\({}^{*}\) | \(-\)0.0175 | \(-\)0.2840\({}^{*}\) | \(-\)0.0157 | \(-\)0.3068\({}^{*}\) |
(0.0031) | (0.0401) | (0.0123) | (0.1651) | (0.0127) | (0.1717) | |
positive | \(-\)0.0003 | 0.0144 | 0.0055\({}^{***}\) | 0.0149 | 0.0063\({}^{***}\) | 0.0120 |
(0.0005) | (0.0091) | (0.0020) | (0.0237) | (0.0021) | (0.0269) | |
H3 | ||||||
negative*esg | 0.0152\({}^{*}\) | 0.0645\({}^{*}\) | 0.0704\({}^{*}\) | |||
(0.0092) | (0.0378) | (0.0393) | ||||
positive*esg | \(-\)0.0035 | \(-\)0.0022 | \(-\)0.0013 | |||
(0.0021) | (0.0056) | (0.0063) | ||||
Controls | ||||||
esg | 0.0028\({}^{**}\) | 0.0038\({}^{*}\) | 0.0031 | 0.0013 | 0.0048 | 0.0023 |
(0.0014) | (0.0020) | (0.0036) | (0.0047) | (0.0039) | (0.0054) | |
asset | \(-\)0.0004 | \(-\)0.0005\({}^{*}\) | \(-\)0.0006 | \(-\)0.0008 | \(-\)0.0005 | \(-\)0.0007 |
(0.0003) | (0.0003) | (0.0016) | (0.0015) | (0.0016) | (0.0016) | |
num_news | \(-\)0.0011\({}^{*}\) | \(-\)0.0009 | \(-\)0.0059 | \(-\)0.0055 | \(-\)0.0060 | \(-\)0.0057 |
(0.0006) | (0.0006) | (0.0042) | (0.0043) | (0.0046) | (0.0046) | |
sector | ||||||
communication_services | \(-\)0.0031 | \(-\)0.0030 | \(-\)0.0123 | \(-\)0.0119 | \(-\)0.0145 | \(-\)0.0141 |
(0.0030) | (0.0029) | (0.0118) | (0.0117) | (0.0119) | (0.0117) | |
consumer_discretionary | 0.0004 | 0.0007 | \(-\)0.0045 | \(-\)0.0033 | \(-\)0.0024 | \(-\)0.0010 |
(0.0016) | (0.0015) | (0.0060) | (0.0055) | (0.0064) | (0.0058) | |
consumer_staples | 0.0005 | 0.0006 | \(-\)0.0045 | \(-\)0.0045 | \(-\)0.0054 | \(-\)0.0054 |
(0.0012) | (0.0012) | (0.0048) | (0.0048) | (0.0049) | (0.0049) | |
energy | 0.0003 | 0.0004 | 0.0014 | 0.0015 | \(-\)0.0001 | \(-\)0.0000 |
(0.0012) | (0.0012) | (0.0062) | (0.0062) | (0.0067) | (0.0067) | |
financials | \(-\)0.0002 | 0.0000 | 0.0021 | 0.0027 | 0.0011 | 0.0017 |
(0.0015) | (0.0014) | (0.0077) | (0.0074) | (0.0080) | (0.0077) | |
health_care | \(-\)0.0046\({}^{***}\) | \(-\)0.0050\({}^{***}\) | \(-\)0.0134\({}^{*}\) | \(-\)0.0149\({}^{*}\) | \(-\)0.0146\({}^{**}\) | \(-\)0.0162\({}^{**}\) |
(0.0017) | (0.0018) | (0.0071) | (0.0078) | (0.0073) | (0.0080) | |
information_technology | \(-\)0.0006 | \(-\)0.0008 | \(-\)0.0056 | \(-\)0.0061 | \(-\)0.0048 | \(-\)0.0053 |
(0.0012) | (0.0012) | (0.0064) | (0.0063) | (0.0070) | (0.0068) | |
materials | \(-\)0.0008 | \(-\)0.0008 | 0.0074\({}^{*}\) | 0.0075\({}^{*}\) | 0.0069 | 0.0069 |
(0.0008) | (0.0008) | (0.0038) | (0.0038) | (0.0042) | (0.0042) | |
real_estate | 0.0003 | 0.0003 | 0.0025 | 0.0022 | 0.0050 | 0.0046 |
(0.0019) | (0.0020) | (0.0089) | (0.0090) | (0.0097) | (0.0098) | |
utilities | \(-\)0.0015\({}^{**}\) | \(-\)0.0015\({}^{*}\) | \(-\)0.0066 | \(-\)0.0064 | \(-\)0.0073 | \(-\)0.0070 |
(0.0008) | (0.0008) | (0.0043) | (0.0043) | (0.0046) | (0.0046) | |
_cons | \(-\)0.0004 | \(-\)0.0025 | 0.0093 | 0.0209 | \(-\)0.0002 | 0.0142 |
(0.0071) | (0.0084) | (0.0343) | (0.0309) | (0.0366) | (0.0339) | |
\(N\) | 14,457 | 14,457 | 14,457 | 14,457 | 14,457 | 14,457 |
F_Statistic | 2.95\({}^{***}\) | 2.73\({}^{***}\) | 2.40\({}^{***}\) | 2.20\({}^{***}\) | 2.45\({}^{***}\) | 2.29\({}^{***}\) |
R_Squared | 0.0050 | 0.0073 | 0.0056 | 0.0082 | 0.0053 | 0.0081 |
Adj_R_Squared | 0.0039 | 0.0062 | 0.0046 | 0.0070 | 0.0043 | 0.0069 |