Skip to main content
Top

2025 | OriginalPaper | Chapter

Estimation of Acoustic Emission Arrival Time in Concrete Structures Using Convolutional Neural Network

Authors : Omair Inderyas, Ninel Alver, Aydin Kaya, Ulas Bagci

Published in: Data Science in Engineering Vol. 10

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Acoustic emission (AE) has recently gained a significant interest as a promising technique for monitoring damage progress in various structures including buildings, bridges, pipelines, and storage tanks. It relies on analyzing the acoustic activity, primarily associated with cracking phenomena, to assess structural integrity. However, one crucial parameter derived from AE signals is the time of arrival (ToA) of acoustic events, which is challenging to pick correctly. Accurate estimation of ToA is vital in localizing damage sources and enabling early detection of probable defects. Traditional approaches for ToA estimation often suffer from sensitivity to environmental and operational factors, such as imperfect coupling between AE transducers and the structures.
To address this challenge, this study investigates the application of a one-dimensional convolutional neural network (1D CNN) for precise ToA estimation in AE signals. Experimental data acquired during compression tests on concrete specimens were utilized to train and test the model over windows of 300 and 1024 sample points in AE waveforms. By capturing a batch of representative acoustic features defined on a time basis and monitoring their evolution over time, the model was able to estimate ToA accurately in the window with 300 sample points. This proposed deep learning–based approach demonstrated promising potential for enhancing the accuracy and reliability of damage localization and early defect detection in various structural applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zonzini, F., Bogomolov, D., Dhamija, T., Testoni, N., De Marchi, L., Marzani, A.: Deep learning approaches for robust time of arrival estimation in acoustic emission monitoring. Sensors. 22(3) (2022) Zonzini, F., Bogomolov, D., Dhamija, T., Testoni, N., De Marchi, L., Marzani, A.: Deep learning approaches for robust time of arrival estimation in acoustic emission monitoring. Sensors. 22(3) (2022)
2.
go back to reference Zhang, T., Tayfur, S., Ozevin, D.: The efficiency of arrival time picking methods for acoustic emission source localization in structures with simultaneous damage mechanisms.” Proc. SPIE 12487, Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, Civil Infrastructure & Transportation XVII., 124870N, 18 April (2023) Zhang, T., Tayfur, S., Ozevin, D.: The efficiency of arrival time picking methods for acoustic emission source localization in structures with simultaneous damage mechanisms.” Proc. SPIE 12487, Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, Civil Infrastructure & Transportation XVII., 124870N, 18 April (2023)
3.
go back to reference Zhang, F., Pahlavan, L., Yang, Y.: Evaluation of acoustic emission source localization accuracy in concrete structures. Struct. Heal. Monit. 19(6), 2063–2074 (2020)CrossRef Zhang, F., Pahlavan, L., Yang, Y.: Evaluation of acoustic emission source localization accuracy in concrete structures. Struct. Heal. Monit. 19(6), 2063–2074 (2020)CrossRef
4.
go back to reference Zhang, L., Dong, J., Godinez-Azcuaga, V., Ley, O., Lowendar, E., Saboonchi, H., Ozevin, D.: The identification of accurate and computationally efficient arrival time pick-up method for acoustic tomography 39 (2019) Zhang, L., Dong, J., Godinez-Azcuaga, V., Ley, O., Lowendar, E., Saboonchi, H., Ozevin, D.: The identification of accurate and computationally efficient arrival time pick-up method for acoustic tomography 39 (2019)
5.
go back to reference Mirgal, P., Pal, J., Banerjee, S.: Online acoustic emission source localization in concrete structures using iterative and evolutionary algorithms. Ultrasonics. 108(June), 106211 (2020)CrossRef Mirgal, P., Pal, J., Banerjee, S.: Online acoustic emission source localization in concrete structures using iterative and evolutionary algorithms. Ultrasonics. 108(June), 106211 (2020)CrossRef
6.
go back to reference Stevenson, P.R.: Microearthquakes at Flathead Lake, Montana: a study using automatic earthquake processing. Bull. Seism. Soc. Am. 66(1), 61–80 (1976)CrossRef Stevenson, P.R.: Microearthquakes at Flathead Lake, Montana: a study using automatic earthquake processing. Bull. Seism. Soc. Am. 66(1), 61–80 (1976)CrossRef
7.
go back to reference Zheng, J., Lu, J., Peng, S., Jiang, T.: An automatic microseismic or acoustic emission arrival identification scheme with deep recurrent neural networks. Geophys. J. Int. 212(2), 1389–1397 (2018)CrossRef Zheng, J., Lu, J., Peng, S., Jiang, T.: An automatic microseismic or acoustic emission arrival identification scheme with deep recurrent neural networks. Geophys. J. Int. 212(2), 1389–1397 (2018)CrossRef
8.
go back to reference Guo, C., Zhu, T., Gao, Y., Wu, S., Sun, J.: AEnet: automatic picking of P-Wave first arrivals using deep learning. IEEE Trans. Geosci. Remote Sens. 59(6), 5293–5303 (2021)CrossRef Guo, C., Zhu, T., Gao, Y., Wu, S., Sun, J.: AEnet: automatic picking of P-Wave first arrivals using deep learning. IEEE Trans. Geosci. Remote Sens. 59(6), 5293–5303 (2021)CrossRef
9.
go back to reference Maeda, N.: A method for reading and checking phase times in auto processing system of seismic wave data. Jishin. 38, 365–379 (1985) Maeda, N.: A method for reading and checking phase times in auto processing system of seismic wave data. Jishin. 38, 365–379 (1985)
10.
go back to reference Kim, Y.M., Han, G., Kim, H., Oh, T.M., Kim, J.S., Kwon, T.H.: An integrated approach to real-time acoustic emission damage source localization in piled raft foundations. Appl. Sci. (Switzerland). 10(23), 1–16 (2020) Kim, Y.M., Han, G., Kim, H., Oh, T.M., Kim, J.S., Kwon, T.H.: An integrated approach to real-time acoustic emission damage source localization in piled raft foundations. Appl. Sci. (Switzerland). 10(23), 1–16 (2020)
11.
go back to reference Grosse, C.U., Finck, F.: Quantitative evaluation of fracture processes in concrete using signal-based acoustic emission techniques. Cem. Concr. Compos. 28, 330–336 (2006)CrossRef Grosse, C.U., Finck, F.: Quantitative evaluation of fracture processes in concrete using signal-based acoustic emission techniques. Cem. Concr. Compos. 28, 330–336 (2006)CrossRef
12.
go back to reference Pearson, M.R., Eaton, M., Featherston, C., Pullin, R., Holford, K.: Improved acoustic emission source location during fatigue and impact events in metallic and composite structures. Struct. Control. Health. 16, 382–399 (2017)CrossRef Pearson, M.R., Eaton, M., Featherston, C., Pullin, R., Holford, K.: Improved acoustic emission source location during fatigue and impact events in metallic and composite structures. Struct. Control. Health. 16, 382–399 (2017)CrossRef
13.
go back to reference Kurz, J.H., Grosse, C.U., Reinhardt, H.W.: Strategies for reliable automatic onset time picking of acoustic emissions and of ultrasound signals in concrete. Ultrasonics. 43, 538–546 (2005)CrossRef Kurz, J.H., Grosse, C.U., Reinhardt, H.W.: Strategies for reliable automatic onset time picking of acoustic emissions and of ultrasound signals in concrete. Ultrasonics. 43, 538–546 (2005)CrossRef
14.
go back to reference Kim, J., Oh, S., Kim, H., Choi, W.: Tutorial on time series prediction using 1D-CNN and BiLSTM: A case example of peak electricity demand and system marginal price prediction. Eng. Appl. Artif. Intell. 126, 106817 (2023)CrossRef Kim, J., Oh, S., Kim, H., Choi, W.: Tutorial on time series prediction using 1D-CNN and BiLSTM: A case example of peak electricity demand and system marginal price prediction. Eng. Appl. Artif. Intell. 126, 106817 (2023)CrossRef
Metadata
Title
Estimation of Acoustic Emission Arrival Time in Concrete Structures Using Convolutional Neural Network
Authors
Omair Inderyas
Ninel Alver
Aydin Kaya
Ulas Bagci
Copyright Year
2025
DOI
https://doi.org/10.1007/978-3-031-68142-4_16