Skip to main content
Top
Published in: Neural Computing and Applications 5/2020

22-08-2018 | Original Article

Estimation of hydrogen flow rate in atmospheric Ar:H2 plasma by using artificial neural network

Authors: Sarita Das, Debi Prasad Das, Chinmaya Kumar Sarangi, Bhagyadhar Bhoi

Published in: Neural Computing and Applications | Issue 5/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Atmospheric Ar:H2 plasma is an eco-friendly option for the reduction of metal oxides. For better reduction performance and safety concern, the hydrogen gas injected into the reactor should be monitored. A hydrogen flow rate estimation system is presented in this paper by using an artificial neural network (ANN) model fed with features of optical emission spectra of the plasma. ANN models are studied with two different sets of input, i.e. for the first case the inputs to the model are the three features of Hα line such as the peak intensity count, full-width half maximum and area under Hα line, while for the second case, the peak intensity count of a group of emission lines like Hα, Ar I, O I, K I, Na D lines are considered as the inputs. ANN model is developed for estimating four different sets of hydrogen flow rates 5, 8, 10 and 12 litres per minute (lpm) when the argon flow rate is constant at 10 lpm. For both the input features, the model performances are compared, and it is shown that improved estimation accuracy is observed from the second case, i.e. from peak intensity count of a group of emission lines instead of only hydrogen emission line.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Guessasma S, Montavon G, Coddet C (2004) Modeling of the APS plasma spray process using artificial neural networks: basis, requirements and an example. Comput Mater Sci 29:315–333CrossRef Guessasma S, Montavon G, Coddet C (2004) Modeling of the APS plasma spray process using artificial neural networks: basis, requirements and an example. Comput Mater Sci 29:315–333CrossRef
2.
go back to reference Leparoux M, Loher M, Schreuders C, Siegmann S (2008) Neural network modelling of the inductively coupled RF plasma synthesis of silicon nanoparticles. Powder Technol 185:109–115CrossRef Leparoux M, Loher M, Schreuders C, Siegmann S (2008) Neural network modelling of the inductively coupled RF plasma synthesis of silicon nanoparticles. Powder Technol 185:109–115CrossRef
3.
go back to reference Srinivas K, Vundavilli PR, Hussain MM, Saiteja M (2016) Prediction of welded joint strength in plasma arc welding: a comparative study using back-propagation and radial basis neural networks. IOP Conf Ser Mater Sci Eng 149(1-8):012033CrossRef Srinivas K, Vundavilli PR, Hussain MM, Saiteja M (2016) Prediction of welded joint strength in plasma arc welding: a comparative study using back-propagation and radial basis neural networks. IOP Conf Ser Mater Sci Eng 149(1-8):012033CrossRef
4.
go back to reference Hong SJ, May GS, Park DC (2003) Neural network modeling of reactive ion etching using optical emission spectroscopy data. IEEE Trans Semicond Manuf 16(4):598–608CrossRef Hong SJ, May GS, Park DC (2003) Neural network modeling of reactive ion etching using optical emission spectroscopy data. IEEE Trans Semicond Manuf 16(4):598–608CrossRef
5.
go back to reference Lee SF, Spanos CJ (1995) Prediction of wafer state after plasma processing using real-time tool data. IEEE Trans Semicond Manuf 8:252–261CrossRef Lee SF, Spanos CJ (1995) Prediction of wafer state after plasma processing using real-time tool data. IEEE Trans Semicond Manuf 8:252–261CrossRef
6.
go back to reference Pal S, Pal SK, Samantaray AK (2008) Artificial neural network modeling of weld joint strength prediction of a pulsed metal inert gas welding process using arc signals. J Mater Process Technol 202:464–474CrossRef Pal S, Pal SK, Samantaray AK (2008) Artificial neural network modeling of weld joint strength prediction of a pulsed metal inert gas welding process using arc signals. J Mater Process Technol 202:464–474CrossRef
7.
go back to reference Kim B, Lee H, Kim D (2009) Modeling of thin film process data using a genetic algorithm-optimized initial weight of back propagation neural network. Appl Artif Intell 23:168–178CrossRef Kim B, Lee H, Kim D (2009) Modeling of thin film process data using a genetic algorithm-optimized initial weight of back propagation neural network. Appl Artif Intell 23:168–178CrossRef
8.
go back to reference Kim B, Kim D (2012) Use of neural network to in situ conditioning of semiconductor plasma processing equipment. Appl Soft Comput 12:826–831CrossRef Kim B, Kim D (2012) Use of neural network to in situ conditioning of semiconductor plasma processing equipment. Appl Soft Comput 12:826–831CrossRef
9.
go back to reference Kim B, Kwon M (2009) Prediction of plasma etch process by using actinometry-based optical emission spectroscopy data and neural network. J Mater Process Technol 209:2620–2626CrossRef Kim B, Kwon M (2009) Prediction of plasma etch process by using actinometry-based optical emission spectroscopy data and neural network. J Mater Process Technol 209:2620–2626CrossRef
10.
go back to reference Barana O, Manduchi G (2002) Application of neural networks for the measurement of electronic temperature in nuclear fusion experiments. Neural Comput Appl 10:351–356CrossRef Barana O, Manduchi G (2002) Application of neural networks for the measurement of electronic temperature in nuclear fusion experiments. Neural Comput Appl 10:351–356CrossRef
11.
go back to reference Jelil RA, Zeng X, Koehl L, Perwuelz A (2013) Modeling plasma surface modification of textile fabrics using artificial neural networks. Eng Appl Artif Intell 26:1854–1864CrossRef Jelil RA, Zeng X, Koehl L, Perwuelz A (2013) Modeling plasma surface modification of textile fabrics using artificial neural networks. Eng Appl Artif Intell 26:1854–1864CrossRef
12.
go back to reference Rastovic D (2012) Targeting and synchronization at tokamak with recurrent artificial neural networks. Neural Comput Appl 21(5):1065–1069CrossRef Rastovic D (2012) Targeting and synchronization at tokamak with recurrent artificial neural networks. Neural Comput Appl 21(5):1065–1069CrossRef
13.
go back to reference Liu T, Planche MP, Kanta AF, Deng S, Montavon G, Deng K, Ren ZM (2013) Plasma spray process operating parameters optimization based on artificial intelligence. Plasma Chem Plasma Process 33:1025–1041CrossRef Liu T, Planche MP, Kanta AF, Deng S, Montavon G, Deng K, Ren ZM (2013) Plasma spray process operating parameters optimization based on artificial intelligence. Plasma Chem Plasma Process 33:1025–1041CrossRef
14.
go back to reference Choudhury TA, Berndt CC, Man Z (2015) Modular implementation of artificial neural network in predicting in-flight particle characteristics of an atmospheric plasma spray process. Eng Appl Artif Intell 45:57–70CrossRef Choudhury TA, Berndt CC, Man Z (2015) Modular implementation of artificial neural network in predicting in-flight particle characteristics of an atmospheric plasma spray process. Eng Appl Artif Intell 45:57–70CrossRef
15.
go back to reference Yadav N, Yadav A, Kumar M, Kim JH (2017) An efficient algorithm based on artificial neural networks and particle swarm optimization for solution of nonlinear Troesch’s problem. Neural Comput Appl 28:171–178CrossRef Yadav N, Yadav A, Kumar M, Kim JH (2017) An efficient algorithm based on artificial neural networks and particle swarm optimization for solution of nonlinear Troesch’s problem. Neural Comput Appl 28:171–178CrossRef
18.
go back to reference Khandelwal M, Marto A, Fatemi SA, Ghoroqi M, Armaghani DJ, Singh TN, Tabrizi O (2018) Implementing an ANN model optimized by genetic algorithm for estimating cohesion of limestone samples. Eng Comput 34:307–317CrossRef Khandelwal M, Marto A, Fatemi SA, Ghoroqi M, Armaghani DJ, Singh TN, Tabrizi O (2018) Implementing an ANN model optimized by genetic algorithm for estimating cohesion of limestone samples. Eng Comput 34:307–317CrossRef
19.
go back to reference Abad SV, Yilmaz M, Armaghani DJ, Tugrul A (2018) Prediction of the durability of limestone aggregates using computational techniques. Neural Comput Appl 29(2):423–433CrossRef Abad SV, Yilmaz M, Armaghani DJ, Tugrul A (2018) Prediction of the durability of limestone aggregates using computational techniques. Neural Comput Appl 29(2):423–433CrossRef
20.
go back to reference Dalvand S, Ebrahimi M, Pouryoussefi SG (2018) Experimental investigation, modeling and prediction of transition from uniform discharge to filamentary discharge in DBD plasma actuators using artificial neural network. Appl Therm Eng 29:50–61CrossRef Dalvand S, Ebrahimi M, Pouryoussefi SG (2018) Experimental investigation, modeling and prediction of transition from uniform discharge to filamentary discharge in DBD plasma actuators using artificial neural network. Appl Therm Eng 29:50–61CrossRef
21.
go back to reference Chaki S, Bathe RN, Ghosal S, Padmanabham G (2018) Multi-objective optimisation of pulsed Nd:YAG laser cutting process using integrated ANN–NSGAII model. J Intell Manuf 29(1):175–190CrossRef Chaki S, Bathe RN, Ghosal S, Padmanabham G (2018) Multi-objective optimisation of pulsed Nd:YAG laser cutting process using integrated ANN–NSGAII model. J Intell Manuf 29(1):175–190CrossRef
22.
go back to reference Chen J, Feng J, Lu S, Shen Z, Du Y, Peng L, Nian P, Yuan S, Zhang A (2018) Non-thermal plasma and Fe2+ activated persulfate ignited degradation of aqueous crystal violet: degradation mechanism and artificial neural network modeling. Sep Purif Technol 191:75–85CrossRef Chen J, Feng J, Lu S, Shen Z, Du Y, Peng L, Nian P, Yuan S, Zhang A (2018) Non-thermal plasma and Fe2+ activated persulfate ignited degradation of aqueous crystal violet: degradation mechanism and artificial neural network modeling. Sep Purif Technol 191:75–85CrossRef
23.
go back to reference Davoudi M, Davoudi M (2018) Estimation of ECH power deposition based on neural networks and fuzzy logic in plasma fusion Tokamaks. Fusion Eng Des 129:58–67CrossRef Davoudi M, Davoudi M (2018) Estimation of ECH power deposition based on neural networks and fuzzy logic in plasma fusion Tokamaks. Fusion Eng Des 129:58–67CrossRef
24.
go back to reference Palmer RA, Doan TM, Lloyd PG, Jarvis BL, Ahmed NU (2002) Reduction of TiO2 with hydrogen plasma. Plasma Chem Plasma Process 22:335–350CrossRef Palmer RA, Doan TM, Lloyd PG, Jarvis BL, Ahmed NU (2002) Reduction of TiO2 with hydrogen plasma. Plasma Chem Plasma Process 22:335–350CrossRef
25.
go back to reference Fauchais P, Rat V, Delbos C, Coudert JF, Chartier T, Bianchi L (2005) Understanding of suspension DC plasma spraying of finely structured coatings for SOFC. IEEE Trans Plasma Sci 33:920–930CrossRef Fauchais P, Rat V, Delbos C, Coudert JF, Chartier T, Bianchi L (2005) Understanding of suspension DC plasma spraying of finely structured coatings for SOFC. IEEE Trans Plasma Sci 33:920–930CrossRef
26.
go back to reference Crowl DA, Jo YD (2007) The hazards and risks of hydrogen. J Loss Prev Process Ind 20:158–164CrossRef Crowl DA, Jo YD (2007) The hazards and risks of hydrogen. J Loss Prev Process Ind 20:158–164CrossRef
27.
go back to reference Hiebler H, Plaul JF (2004) Hydrogen plasma smelting reduction—an option for steelmaking in the future. Metalurgija 43:155–162 Hiebler H, Plaul JF (2004) Hydrogen plasma smelting reduction—an option for steelmaking in the future. Metalurgija 43:155–162
28.
go back to reference Plaul JF, Krieger W, Back E (2005) Reduction of fine ores in argon–hydrogen plasma. Steel Res Int 76:548–554CrossRef Plaul JF, Krieger W, Back E (2005) Reduction of fine ores in argon–hydrogen plasma. Steel Res Int 76:548–554CrossRef
29.
go back to reference Lemperle M, Weigel A (1985) On the smelting reduction of iron ores with hydrogen-argon plasma. Steel Res Int 56:465–469CrossRef Lemperle M, Weigel A (1985) On the smelting reduction of iron ores with hydrogen-argon plasma. Steel Res Int 56:465–469CrossRef
30.
go back to reference Kamiya K, Kitahara N, Morinaka I, Sakuraya K, Ozawa M, Tanaka M (1984) Reduction of molten iron oxide and FeO bearing slags by H2–Ar plasma. Trans Iron Steel Inst Jpn 24:7–16CrossRef Kamiya K, Kitahara N, Morinaka I, Sakuraya K, Ozawa M, Tanaka M (1984) Reduction of molten iron oxide and FeO bearing slags by H2–Ar plasma. Trans Iron Steel Inst Jpn 24:7–16CrossRef
31.
go back to reference Sabat KC, Rajput P, Paramguru R, Bhoi B, Mishra BK (2014) Reduction of oxide minerals by hydrogen plasma: an overview. Plasma Chem Plasma Process 34(1):1–23CrossRef Sabat KC, Rajput P, Paramguru R, Bhoi B, Mishra BK (2014) Reduction of oxide minerals by hydrogen plasma: an overview. Plasma Chem Plasma Process 34(1):1–23CrossRef
32.
go back to reference Das S, Das DP, Rajput P, Ghosh J, Bhoi B, Mishra BK (2016) Monitoring hydrogen plasma reduction of oxides by Na D lines. Plasma Chem Plasma Process 36(4):1125–1139CrossRef Das S, Das DP, Rajput P, Ghosh J, Bhoi B, Mishra BK (2016) Monitoring hydrogen plasma reduction of oxides by Na D lines. Plasma Chem Plasma Process 36(4):1125–1139CrossRef
33.
go back to reference Rajput P, Bhoi B, Sahoo S, Paramguru RK, Mishra BK (2013) Preliminary investigation into direct reduction of iron in low temperature hydrogen plasma. Ironmak Steelmak 40:61–68CrossRef Rajput P, Bhoi B, Sahoo S, Paramguru RK, Mishra BK (2013) Preliminary investigation into direct reduction of iron in low temperature hydrogen plasma. Ironmak Steelmak 40:61–68CrossRef
34.
go back to reference Hassoun MH (1995) Fundamentals of artificial neural networks. MIT Press, CambridgeMATH Hassoun MH (1995) Fundamentals of artificial neural networks. MIT Press, CambridgeMATH
Metadata
Title
Estimation of hydrogen flow rate in atmospheric Ar:H2 plasma by using artificial neural network
Authors
Sarita Das
Debi Prasad Das
Chinmaya Kumar Sarangi
Bhagyadhar Bhoi
Publication date
22-08-2018
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 5/2020
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-018-3674-z

Other articles of this Issue 5/2020

Neural Computing and Applications 5/2020 Go to the issue

Premium Partner