Skip to main content
Top

2015 | OriginalPaper | Chapter

4. Etching Technologies

Authors : Hans H. Gatzen, Volker Saile, Jürg Leuthold

Published in: Micro and Nano Fabrication

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Solid surfaces can be etched by wet processes (wet-chemical or electrochemical), dry processes (physical, chemical, or a combination of both), or mechanical processes (without or with a chemical contribution). The wet etch attack may be chemical by a liquid etchant or electrochemical (a reversal of electrochemical deposition) by an electrolyte under the influence of a current. In physical dry etching, the substrate is bombarded by ions (ion beam etching). Chemical etching may either use a plasma, enhancing the chemical attack by dissociating the etchant’s volatile chemical species (plasma etching), or a vapor (vapor phase etching). Physical-chemical processes combine ion bombardment with chemical attack through dissociated chemical species. Mechanical processes are powder blasting and (on the border between mechanical and physical, with and without a chemical component) cluster beam technologies. Subject to etching may be either the substrate material itself (bulk etching/micromachining) or thin-films at the surface (surface etching/micromachining). Particularly bulk micromachining of single crystal silicon takes advantage of etch-limiting crystal planes for constructing three-dimensional patterns in the substrate material.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Kern W, Deckert CD (1978) Chemical etching. In: Vossen JL, Kern W (eds) Thin film processes. Academic Press, New York Kern W, Deckert CD (1978) Chemical etching. In: Vossen JL, Kern W (eds) Thin film processes. Academic Press, New York
3.
go back to reference Lehmann HW (1991) Plasma-assisted etching. In: Vossen JL, Kern W (eds) Thin film processes II. Academic Press, San Diego Lehmann HW (1991) Plasma-assisted etching. In: Vossen JL, Kern W (eds) Thin film processes II. Academic Press, San Diego
6.
go back to reference Madou MJ (2002) Fundamentals of microfabrication, 2nd edn. CRC Press, Boca Raton Madou MJ (2002) Fundamentals of microfabrication, 2nd edn. CRC Press, Boca Raton
7.
go back to reference Harris TW (1976) Chemical milling. Charendon Press, Oxford Harris TW (1976) Chemical milling. Charendon Press, Oxford
12.
go back to reference Büttgenbach S (1994) Mikromechanik. Teubner Studienbücher Angewandte Physik (Teubner textbooks of applied physics), 2nd edn. B.G. Teubner, Stuttgart Büttgenbach S (1994) Mikromechanik. Teubner Studienbücher Angewandte Physik (Teubner textbooks of applied physics), 2nd edn. B.G. Teubner, Stuttgart
14.
go back to reference Kittel C (1976) Introduction into solid state physics. Wiley, New York Kittel C (1976) Introduction into solid state physics. Wiley, New York
15.
go back to reference Ashcroft NW, Mermin ND (1976) Solid state physics. Saunders College, Philadelphia Ashcroft NW, Mermin ND (1976) Solid state physics. Saunders College, Philadelphia
16.
go back to reference Ohring M (2002) Material science of thin films, deposition and structure, 2nd edn. Academic Press, San Diego Ohring M (2002) Material science of thin films, deposition and structure, 2nd edn. Academic Press, San Diego
17.
go back to reference Sze SM (2001) Semiconductor devices: physics and technology, 2nd edn. Wiley, New York Sze SM (2001) Semiconductor devices: physics and technology, 2nd edn. Wiley, New York
18.
go back to reference Elwenspoek M, Jansen H (2004) Silicon micromachining, 2nd edn. Cambridge University Press, Cambridge Elwenspoek M, Jansen H (2004) Silicon micromachining, 2nd edn. Cambridge University Press, Cambridge
19.
go back to reference Peterson KE (1982) Silicon as a mechanical material. Proc IEEE 70:420–457CrossRef Peterson KE (1982) Silicon as a mechanical material. Proc IEEE 70:420–457CrossRef
21.
go back to reference McMillan PF, Wilson M, Daisenberger D, Machon D (2005) A density-driven phase transition between semiconducting and metallic polyamorphs of silicon. Nat Mater 4:680–684. doi:10.1038/nmat1458 CrossRef McMillan PF, Wilson M, Daisenberger D, Machon D (2005) A density-driven phase transition between semiconducting and metallic polyamorphs of silicon. Nat Mater 4:680–684. doi:10.​1038/​nmat1458 CrossRef
23.
go back to reference Jia G, Madou MJ (2006) MEMS fabrication. In: Gad-el-Hak M (ed) MEMS design and fabrication, 2nd edn. CPC Press, Boca Raton Jia G, Madou MJ (2006) MEMS fabrication. In: Gad-el-Hak M (ed) MEMS design and fabrication, 2nd edn. CPC Press, Boca Raton
25.
go back to reference Elwenspoek M (1993) On the mechanism of anisotropic etching of silicon. J Electrochem Soc 140:2075–2080CrossRef Elwenspoek M (1993) On the mechanism of anisotropic etching of silicon. J Electrochem Soc 140:2075–2080CrossRef
26.
go back to reference Seidel H, Cespregi L, Heuberger A, Baumgärtel H (1990) Anisotropic etching of crystalline silicon in alkaline solutions I. Orientation dependence and behavior of passivation layers. J Electrochem Soc 137:3612–3626CrossRef Seidel H, Cespregi L, Heuberger A, Baumgärtel H (1990) Anisotropic etching of crystalline silicon in alkaline solutions I. Orientation dependence and behavior of passivation layers. J Electrochem Soc 137:3612–3626CrossRef
28.
go back to reference Schnackenberg U, Benecke W, Lange P (1991) TMAHW etchants for silicon micromachining. Tech Digest Transducers 91:815–818 Schnackenberg U, Benecke W, Lange P (1991) TMAHW etchants for silicon micromachining. Tech Digest Transducers 91:815–818
29.
go back to reference Kendall DL, de Guel GR, Torres-Jacome A (1982) The Wagon wheel method applied around the (011) zone of silicon. In: Electrochemical society 181st meeting abstract, pp 209–210 Kendall DL, de Guel GR, Torres-Jacome A (1982) The Wagon wheel method applied around the (011) zone of silicon. In: Electrochemical society 181st meeting abstract, pp 209–210
30.
go back to reference Wind RA, Hines MA (2000) Macroscopic etch anisotropies and microscopic reaction mechanisms: a micromachined structure for the rapid assay of etchant anisotropy. Surf Sci 460:21–38CrossRef Wind RA, Hines MA (2000) Macroscopic etch anisotropies and microscopic reaction mechanisms: a micromachined structure for the rapid assay of etchant anisotropy. Surf Sci 460:21–38CrossRef
32.
go back to reference Greenwood JC (1969) Ethylene diamine-cathecol-water mixture shows preferential etching of p-n junction. J Electrochem Soc 116:1325–1326CrossRef Greenwood JC (1969) Ethylene diamine-cathecol-water mixture shows preferential etching of p-n junction. J Electrochem Soc 116:1325–1326CrossRef
33.
go back to reference Seidel H, Cespregi L, Heuberger A, Baumgärtel H (1990) I. Anisotropic etching of crystalline silicon in alkaline solutions II. Influence of dopants. J Electrochem Soc 137:3626–3632CrossRef Seidel H, Cespregi L, Heuberger A, Baumgärtel H (1990) I. Anisotropic etching of crystalline silicon in alkaline solutions II. Influence of dopants. J Electrochem Soc 137:3626–3632CrossRef
34.
go back to reference Waggener HA (1970) Electrochemically controlled thinning of silicon. Bell Sys Tech J 49:473–475CrossRef Waggener HA (1970) Electrochemically controlled thinning of silicon. Bell Sys Tech J 49:473–475CrossRef
35.
go back to reference Menz W, Mohr J, Paul O (2001) Microsystem technology. Wiley-VCH, Weinheim Menz W, Mohr J, Paul O (2001) Microsystem technology. Wiley-VCH, Weinheim
36.
go back to reference Nathanson HC, Newell WE, Wickstrom RA, Davies JR Jr (1967) The resonant-gate transistor. IEEE Trans Electron Devices 14:117–133CrossRef Nathanson HC, Newell WE, Wickstrom RA, Davies JR Jr (1967) The resonant-gate transistor. IEEE Trans Electron Devices 14:117–133CrossRef
37.
go back to reference Howe RT, Muller RS (1986) Resonant-microbridge vapor sensor. IEEE Trans Electron Devices 33:499–506CrossRef Howe RT, Muller RS (1986) Resonant-microbridge vapor sensor. IEEE Trans Electron Devices 33:499–506CrossRef
39.
go back to reference Bhushan B (1995) Tribology of head-medium interface. In: Proceedings of APMRC ’95 tribology workshop part I, Singapore Bhushan B (1995) Tribology of head-medium interface. In: Proceedings of APMRC ’95 tribology workshop part I, Singapore
40.
go back to reference Caro J (2013) Etchant recommendations. PCI, Leibniz Universität Hannover, Germany (unpublished) Caro J (2013) Etchant recommendations. PCI, Leibniz Universität Hannover, Germany (unpublished)
41.
go back to reference Plasma pre-treatment for vacuum deposition (2011) Unpublished company presentation. Von Ardenne Anlagentechnik, Dresden Plasma pre-treatment for vacuum deposition (2011) Unpublished company presentation. Von Ardenne Anlagentechnik, Dresden
42.
go back to reference Inverse Sputter-Ätzeinrichtung (Inverse sputter etching system) (no year) Unpublished company report. Von Ardenne Anlagentechnik, Dresden, Germany Inverse Sputter-Ätzeinrichtung (Inverse sputter etching system) (no year) Unpublished company report. Von Ardenne Anlagentechnik, Dresden, Germany
43.
go back to reference Harper JME, Cuomo JJ, Kaufman HR (1982) Technology and applications of broad-beam ion sources used in sputtering, part II, applications. J. Vac Sci Technol 21:737–756CrossRef Harper JME, Cuomo JJ, Kaufman HR (1982) Technology and applications of broad-beam ion sources used in sputtering, part II, applications. J. Vac Sci Technol 21:737–756CrossRef
44.
go back to reference Puckett PR, Michel SL, Hughes WE (1991) Ion Beam Etching. In: Vossen JL, Kern W (eds) Thin film processes II. Academic Press, San Diego Puckett PR, Michel SL, Hughes WE (1991) Ion Beam Etching. In: Vossen JL, Kern W (eds) Thin film processes II. Academic Press, San Diego
46.
go back to reference Oechsner H, Waldorf I, Wolf GK (1995) Teilchenstrahlgestützte Verfahren (Particle beam based processes). In: Kienel G, Röll K (eds) Vakuumbeschichtung 2 (Vacuum deposition 2). Springer, Berlin Oechsner H, Waldorf I, Wolf GK (1995) Teilchenstrahlgestützte Verfahren (Particle beam based processes). In: Kienel G, Röll K (eds) Vakuumbeschichtung 2 (Vacuum deposition 2). Springer, Berlin
47.
go back to reference Stevie FA, Giannuzzi LA, Prenitzer BI (2005) The focused. In: Giannuzzi LA, Stevie FA (eds) Introduction to focused ion beams: instrumentation, theory, techniques, and practice. Springer, New York Stevie FA, Giannuzzi LA, Prenitzer BI (2005) The focused. In: Giannuzzi LA, Stevie FA (eds) Introduction to focused ion beams: instrumentation, theory, techniques, and practice. Springer, New York
48.
go back to reference Volkert CA, Minor AM (2007) Focused ion beam microscopy and micromachining. MRS Bull 32:389–399CrossRef Volkert CA, Minor AM (2007) Focused ion beam microscopy and micromachining. MRS Bull 32:389–399CrossRef
49.
go back to reference Müller EW, Tsong TT (1969) Field ion microscopy principles and applications. Elsevier, New York Müller EW, Tsong TT (1969) Field ion microscopy principles and applications. Elsevier, New York
51.
go back to reference Seliger RL, Ward JW, Wang V, Kubena RL (1979) A high-intensity scanning ion probe with submicrometer spot size. Appl Phys Lett 34:310–312CrossRef Seliger RL, Ward JW, Wang V, Kubena RL (1979) A high-intensity scanning ion probe with submicrometer spot size. Appl Phys Lett 34:310–312CrossRef
53.
go back to reference Crawford CK (2003) Ion charge neutralization for electron beam devices. US patent 4,249,077 Crawford CK (2003) Ion charge neutralization for electron beam devices. US patent 4,249,077
54.
55.
go back to reference Casey DJ Jr, Doyle AF, Lee RG, Stewart DK, Zimmermann H (1994) Gas-assisted etching with focused ion beam technology. Microelectronic Eng 24:43–50CrossRef Casey DJ Jr, Doyle AF, Lee RG, Stewart DK, Zimmermann H (1994) Gas-assisted etching with focused ion beam technology. Microelectronic Eng 24:43–50CrossRef
56.
go back to reference Handbook Committee (1992) ASM Handbook volume 10: materials characterization, 3rd print. ASM International, Park Handbook Committee (1992) ASM Handbook volume 10: materials characterization, 3rd print. ASM International, Park
57.
go back to reference Andreeva E (2005) Fertigung und Erprobung eines Mikro-Wirbelstromsensors zur Abstandsmessung (Fabrication and evaluation of a micro eddy current sensor for proximity measurement). Ph.D. thesis, Leibniz Universität Hannover, Germany Andreeva E (2005) Fertigung und Erprobung eines Mikro-Wirbelstromsensors zur Abstandsmessung (Fabrication and evaluation of a micro eddy current sensor for proximity measurement). Ph.D. thesis, Leibniz Universität Hannover, Germany
58.
go back to reference Rejntjens S, Puers R (2001) A review of focused ion beam applications in microsystem technology. J Micromech Microeng 11:287–300CrossRef Rejntjens S, Puers R (2001) A review of focused ion beam applications in microsystem technology. J Micromech Microeng 11:287–300CrossRef
59.
go back to reference Ali MY, Hung W, Yongqi F (2010) A review of focused ion beam sputtering. Int J Precis Eng Manuf 11:157–170CrossRef Ali MY, Hung W, Yongqi F (2010) A review of focused ion beam sputtering. Int J Precis Eng Manuf 11:157–170CrossRef
61.
go back to reference Irving SM, Lemons KE, and Bobos GE (1971) Gas plasma vapor etching process. US patent 3,615,956 Irving SM, Lemons KE, and Bobos GE (1971) Gas plasma vapor etching process. US patent 3,615,956
65.
go back to reference Traisigkhachol O, Schmid H, Marc M, Gatzen HH (2010) Applying SU-8TM to the fabrication of micro electro discharge machining electrodes. Microsyst Technol 16:1445–1450. doi:10.1007/s00542-009-1011-2 Traisigkhachol O, Schmid H, Marc M, Gatzen HH (2010) Applying SU-8TM to the fabrication of micro electro discharge machining electrodes. Microsyst Technol 16:1445–1450. doi:10.​1007/​s00542-009-1011-2
68.
go back to reference Dentinger PM, Clift WM, Goods SH (2002) Removal of SU-8 photoresist for thick film applications. Microelectron Eng 61–62:993–1000CrossRef Dentinger PM, Clift WM, Goods SH (2002) Removal of SU-8 photoresist for thick film applications. Microelectron Eng 61–62:993–1000CrossRef
72.
go back to reference Witvrouw A, Du Bois B, De Moor P, Verbist A, Van Hoof C, Bender H, Baert K (2000) A comparison between wet HF etching and vapor HF etching for sacrificial oxide removal. In: Proceedings of SPIE 4174, micromachining and microfabrication process technology VI, 130. doi:10.1117/12.396423 Witvrouw A, Du Bois B, De Moor P, Verbist A, Van Hoof C, Bender H, Baert K (2000) A comparison between wet HF etching and vapor HF etching for sacrificial oxide removal. In: Proceedings of SPIE 4174, micromachining and microfabrication process technology VI, 130. doi:10.​1117/​12.​396423
76.
go back to reference Reinberg AR (1973) Radial flow reactor. US patent 3,757,733, assigned to Texas Instruments Reinberg AR (1973) Radial flow reactor. US patent 3,757,733, assigned to Texas Instruments
80.
go back to reference Laermer F, Schilp A (1994) Method for anisotropically etching silicon. US patent 5,501,893, assigned to Robert Bosch GmbH Laermer F, Schilp A (1994) Method for anisotropically etching silicon. US patent 5,501,893, assigned to Robert Bosch GmbH
81.
go back to reference Laermer F, Schilp A (1999) Method for anisotropically etching silicon. US patent 6,531,068, assigned to Robert Bosch GmbH Laermer F, Schilp A (1999) Method for anisotropically etching silicon. US patent 6,531,068, assigned to Robert Bosch GmbH
83.
go back to reference Sainiemi L (2009) Cryogenic deep reactive ion etching of silicon micro and nanostructures. Ph.D. thesis, Helsinki University of Technology Sainiemi L (2009) Cryogenic deep reactive ion etching of silicon micro and nanostructures. Ph.D. thesis, Helsinki University of Technology
84.
go back to reference Tachi S, Kazunori K, Okudaira S (1988) Low-temperature reactive ion etching and microwave plasma etching of silicon. Appl Phys Lett 52:616–618CrossRef Tachi S, Kazunori K, Okudaira S (1988) Low-temperature reactive ion etching and microwave plasma etching of silicon. Appl Phys Lett 52:616–618CrossRef
86.
go back to reference MacDonald NC (1996) SCREAM microelectromechanical systems. Microelectron Eng 32:49–73CrossRef MacDonald NC (1996) SCREAM microelectromechanical systems. Microelectron Eng 32:49–73CrossRef
87.
go back to reference Zhang Wh, Zhang Wb, Turner K, Hartwell PG (2004) SCREAM’03: a single mask process for high-Q single crystal silicon MEMS. In: Proceedings of IMECE2004-61140 Zhang Wh, Zhang Wb, Turner K, Hartwell PG (2004) SCREAM’03: a single mask process for high-Q single crystal silicon MEMS. In: Proceedings of IMECE2004-61140
88.
go back to reference Wensink H (2002) Fabrication of microstructures by. Ph.D. thesis, University of Twente, Enschede, The Netherlands Wensink H (2002) Fabrication of microstructures by. Ph.D. thesis, University of Twente, Enschede, The Netherlands
89.
go back to reference Chung CW, Brock JR, Trachtenberg I (1993) Reactive cluster beam etching of fine patterns. Appl Phys Lett 63:3341–3343. doi:10.1063/1.110164 Chung CW, Brock JR, Trachtenberg I (1993) Reactive cluster beam etching of fine patterns. Appl Phys Lett 63:3341–3343. doi:10.​1063/​1.​110164
91.
go back to reference Wedding CA, Strbik III OM, Peters EF, Guy JW, Wedding DK (2006) Overview of flexible plasma display technology. In: Proceedings of ASID ’06, pp 323–327 Wedding CA, Strbik III OM, Peters EF, Guy JW, Wedding DK (2006) Overview of flexible plasma display technology. In: Proceedings of ASID ’06, pp 323–327
92.
go back to reference Fujinaga A (2008) Method of forming partitions of plasma display panel and device for forming partitions. US patent application 20080014837 A1. Originally assigned to Fujitsu Hitachi Plasma Display Limited Fujinaga A (2008) Method of forming partitions of plasma display panel and device for forming partitions. US patent application 20080014837 A1. Originally assigned to Fujitsu Hitachi Plasma Display Limited
94.
go back to reference Yamada I, Matsuo J, Toyoda N, Kirkpatrick A (2001) Materials processing by gas cluster ion beams. Mater Sci Eng R34:231–295CrossRef Yamada I, Matsuo J, Toyoda N, Kirkpatrick A (2001) Materials processing by gas cluster ion beams. Mater Sci Eng R34:231–295CrossRef
95.
go back to reference Yamaguchi Y, Gspann J (2002) Large-scale molecular dynamics simulations of cluster impact and erosion processes on a diamond-surface. Phy Rev B—Condens Matter Mater Phy 66:1554081–15540810 Yamaguchi Y, Gspann J (2002) Large-scale molecular dynamics simulations of cluster impact and erosion processes on a diamond-surface. Phy Rev B—Condens Matter Mater Phy 66:1554081–15540810
96.
go back to reference Kanhere DG, Chacko S (2011) Melting of fine-sized systems. In: Sattler KD (ed) Handbook of nanophysics: principles and methods. CRC Press, Boca Raton Kanhere DG, Chacko S (2011) Melting of fine-sized systems. In: Sattler KD (ed) Handbook of nanophysics: principles and methods. CRC Press, Boca Raton
Metadata
Title
Etching Technologies
Authors
Hans H. Gatzen
Volker Saile
Jürg Leuthold
Copyright Year
2015
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-44395-8_4