Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2018 | OriginalPaper | Chapter

ETER-net: End to End MR Image Reconstruction Using Recurrent Neural Network

Authors : Changheun Oh, Dongchan Kim, Jun-Young Chung, Yeji Han, HyunWook Park

Published in: Machine Learning for Medical Image Reconstruction

Publisher: Springer International Publishing

share
SHARE

Abstract

Recently, an end-to-end MR image reconstruction technique, called AUTOMAP, was introduced to simplify the complicated reconstruction process of MR image and to improve the quality of reconstructed MR images using deep learning. Despite the benefits of end-to-end architecture and superior quality of reconstructed MR images, AUTOMAP suffers from the large amount of training parameters required by multiple fully connected layers. In this work, we propose a new end-to-end MR image reconstruction technique based on the recurrent neural network (RNN) architecture, which can be more efficiently used for magnetic resonance (MR) image reconstruction than the convolutional neural network (CNN). We modified the RNN architecture of ReNet for image domain data to reconstruct an MR image from k-space data by utilizing recurrent cells. The proposed network reconstructs images from the k-space data with a reduced number of parameters compared with that of fully connected architectures. We present a quantitative evaluation of the proposed method for Cartesian trajectories using nMSE and SSIM. We also present preliminary images reconstructed from k-space data acquired in the radial trajectory.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko





Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literature
1.
go back to reference Zhu, B., Liu, J.Z., Cauley, S.F., Rosen, B.R., Rosen, M.S.: Image reconstruction by domain-transform manifold learning. Nature 555(7697), 487 (2018) CrossRef Zhu, B., Liu, J.Z., Cauley, S.F., Rosen, B.R., Rosen, M.S.: Image reconstruction by domain-transform manifold learning. Nature 555(7697), 487 (2018) CrossRef
3.
go back to reference Hammernik, K., et al.: Learning a variational network for reconstruction of accelerated MRI data. Magn. Reson. Med. 79(6), 3055–3071 (2018) CrossRef Hammernik, K., et al.: Learning a variational network for reconstruction of accelerated MRI data. Magn. Reson. Med. 79(6), 3055–3071 (2018) CrossRef
4.
go back to reference Kwon, K., Kim, D., Park, H.: A parallel MR imaging method using multilayer perceptron. Med. Phys. 44(12), 6209–6224 (2017) CrossRef Kwon, K., Kim, D., Park, H.: A parallel MR imaging method using multilayer perceptron. Med. Phys. 44(12), 6209–6224 (2017) CrossRef
5.
go back to reference Schlemper, J., Caballero, J., Hajnal, J.V., Price, A.N., Rueckert, D.: A deep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imaging 37(2), 491–503 (2018) CrossRef Schlemper, J., Caballero, J., Hajnal, J.V., Price, A.N., Rueckert, D.: A deep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imaging 37(2), 491–503 (2018) CrossRef
6.
go back to reference Yang, G., et al.: DAGAN: deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction. IEEE Trans. Med. Imaging 37(6), 1310–1321 (2018) CrossRef Yang, G., et al.: DAGAN: deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction. IEEE Trans. Med. Imaging 37(6), 1310–1321 (2018) CrossRef
7.
go back to reference Quan, T.M., Nguyen-Duc, T., Jeong, W.K.: Compressed sensing MRI reconstruction using a generative adversarial network with a cyclic loss. IEEE Trans. Med. Imaging 37(6), 1488–1497 (2018) CrossRef Quan, T.M., Nguyen-Duc, T., Jeong, W.K.: Compressed sensing MRI reconstruction using a generative adversarial network with a cyclic loss. IEEE Trans. Med. Imaging 37(6), 1488–1497 (2018) CrossRef
8.
go back to reference Graves, A., Schmidhuber, J.: Offline handwriting recognition with multidimensional recurrent neural networks. In: Advances in Neural Information Processing Systems, pp. 545–552 (2009) Graves, A., Schmidhuber, J.: Offline handwriting recognition with multidimensional recurrent neural networks. In: Advances in Neural Information Processing Systems, pp. 545–552 (2009)
9.
go back to reference Visin, F., Kastner, K., Cho, K., Matteucci, M., Courville, A., Bengio, Y.: ReNet: a recurrent neural network based alternative to convolutional networks. arXiv preprint arXiv:​1505.​00393 (2015) Visin, F., Kastner, K., Cho, K., Matteucci, M., Courville, A., Bengio, Y.: ReNet: a recurrent neural network based alternative to convolutional networks. arXiv preprint arXiv:​1505.​00393 (2015)
10.
go back to reference Tieleman, T., Hinton, G.: Lecture 6.5-RmsProp: divide the gradient by a running average of its recent magnitude. COURSERA: Neural Netw. Mach. Learn. 4(2), 26–31 (2012) Tieleman, T., Hinton, G.: Lecture 6.5-RmsProp: divide the gradient by a running average of its recent magnitude. COURSERA: Neural Netw. Mach. Learn. 4(2), 26–31 (2012)
11.
go back to reference Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. OSDI 16, 265–283 (2016) Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. OSDI 16, 265–283 (2016)
12.
13.
go back to reference Deng, J., Berg, A., Satheesh, S., Su, H., Khosla, A., Fei-Fei, L.: ImageNet large scale visual recognition competition 2012 (ILSVRC 2012). Google Scholar (2012) Deng, J., Berg, A., Satheesh, S., Su, H., Khosla, A., Fei-Fei, L.: ImageNet large scale visual recognition competition 2012 (ILSVRC 2012). Google Scholar (2012)
14.
go back to reference Fan, Q., et al.: MGH-USC human connectome project datasets with ultra-high b-value diffusion MRI. NeuroImage 124, 1108–1114 (2016) CrossRef Fan, Q., et al.: MGH-USC human connectome project datasets with ultra-high b-value diffusion MRI. NeuroImage 124, 1108–1114 (2016) CrossRef
15.
go back to reference Poynton, C.: Frequently asked questions about color (1997). Accessed 19 June 2004 Poynton, C.: Frequently asked questions about color (1997). Accessed 19 June 2004
16.
go back to reference Van der Walt, S., et al.: scikit-image: image processing in python. PeerJ 2, e453 (2014) CrossRef Van der Walt, S., et al.: scikit-image: image processing in python. PeerJ 2, e453 (2014) CrossRef
17.
go back to reference Uecker, M., et al.: Berkeley advanced reconstruction toolbox. In: Proceedings of International Society for Magnetic Resonance in Medicine, vol. 23, p. 2486 (2015) Uecker, M., et al.: Berkeley advanced reconstruction toolbox. In: Proceedings of International Society for Magnetic Resonance in Medicine, vol. 23, p. 2486 (2015)
18.
go back to reference Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004) CrossRef Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004) CrossRef
19.
Metadata
Title
ETER-net: End to End MR Image Reconstruction Using Recurrent Neural Network
Authors
Changheun Oh
Dongchan Kim
Jun-Young Chung
Yeji Han
HyunWook Park
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-030-00129-2_2

Premium Partner