Skip to main content
Top

2013 | OriginalPaper | Chapter

2. Euler’s Scheme and Wiener’s Measure

Author : Zeev Schuss

Published in: Brownian Dynamics at Boundaries and Interfaces

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A discrete computer simulation of an Itô SDE is a necessary computational tool for the study of the behavior of diffusing particles in situations in which the FPE does not provide the needed information or when its analytical or numerical solutions are not feasible. This is the situation, for example, in the study of interacting particles, in the study of diffusion through narrow passages, in the simulation of ions in a small volume in a large continuum, and many more situations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Asmussen, S., P. Glynn, and J. Pitman (1995), “Discretization error in simulation of one-dimensional reflecting Brownian motion,” Ann. Appl. Prob., 5 (4), 875–896.MathSciNetMATHCrossRef Asmussen, S., P. Glynn, and J. Pitman (1995), “Discretization error in simulation of one-dimensional reflecting Brownian motion,” Ann. Appl. Prob., 5 (4), 875–896.MathSciNetMATHCrossRef
go back to reference Bally, V. and D. Talay (1996a), “The law of the Euler scheme for stochastic differential equations. I: Convergence rate of the distribution function.” Probab. Theory Relat. Fields 104 (1), pp. 43–60. Bally, V. and D. Talay (1996a), “The law of the Euler scheme for stochastic differential equations. I: Convergence rate of the distribution function.” Probab. Theory Relat. Fields 104 (1), pp. 43–60.
go back to reference Bally, V. and D. Talay (1996b), “The law of the Euler scheme for stochastic differential equations. II: Convergence rate of the density.” Monte Carlo Methods Appl. 2 (2), pp. 93–128. Bally, V. and D. Talay (1996b), “The law of the Euler scheme for stochastic differential equations. II: Convergence rate of the density.” Monte Carlo Methods Appl. 2 (2), pp. 93–128.
go back to reference Batsilas, L., A.M. Berezhkovskii, and S.Y. Shvartsman (2003), “Stochastic model of autocrine and paracrine signals in cell culture assays,” Biophys. J., 85, 3659–3665.CrossRef Batsilas, L., A.M. Berezhkovskii, and S.Y. Shvartsman (2003), “Stochastic model of autocrine and paracrine signals in cell culture assays,” Biophys. J., 85, 3659–3665.CrossRef
go back to reference Beccaria, M., G. Curci, and A. Vicere (1993), “Numerical solutions of first-exit-time problems,” Phys. Rev E., 48 (2), 1539–1546.CrossRef Beccaria, M., G. Curci, and A. Vicere (1993), “Numerical solutions of first-exit-time problems,” Phys. Rev E., 48 (2), 1539–1546.CrossRef
go back to reference Berezhkovskii, A.M., Y.A. Makhnovskii, M.I. Monine, V.Yu. Zitserman, and S.Y. Shvartsman (2004), “Boundary homogenization for trapping by patchy surfaces,” J. Chem. Phys., 121 (22), 11390–11394.CrossRef Berezhkovskii, A.M., Y.A. Makhnovskii, M.I. Monine, V.Yu. Zitserman, and S.Y. Shvartsman (2004), “Boundary homogenization for trapping by patchy surfaces,” J. Chem. Phys., 121 (22), 11390–11394.CrossRef
go back to reference Bossy, M., E. Gobet, and D. Talay (2004), “Symmetrized Euler scheme for an efficient approximation of reflected diffusions.” Journal of Applied Probability, 4 (3), pp. 877–889.MathSciNetCrossRef Bossy, M., E. Gobet, and D. Talay (2004), “Symmetrized Euler scheme for an efficient approximation of reflected diffusions.” Journal of Applied Probability, 4 (3), pp. 877–889.MathSciNetCrossRef
go back to reference Bryan, G.H. (1891), “Diffusion with back reaction,” Proc. Camb. Phil. Soc. 7, 246–248. Bryan, G.H. (1891), “Diffusion with back reaction,” Proc. Camb. Phil. Soc. 7, 246–248.
go back to reference Carslaw, H.S. and J. C. Jaeger (1959), Conduction of Heat in Solids, Oxford University Press, 2nd edition. Carslaw, H.S. and J. C. Jaeger (1959), Conduction of Heat in Solids, Oxford University Press, 2nd edition.
go back to reference Clifford, P. and N. J. B. Green (1986), “On the simulation of the Smoluchowski boundary condition and the interpolation of Brownian paths,” Molecular Physics, 57 (1), 123–128.CrossRef Clifford, P. and N. J. B. Green (1986), “On the simulation of the Smoluchowski boundary condition and the interpolation of Brownian paths,” Molecular Physics, 57 (1), 123–128.CrossRef
go back to reference Collins, F.C. and G.E. Kimball (1949), “Random diffusion-controlled reaction rates,” J. Colloid Sci., 4, 425–437.CrossRef Collins, F.C. and G.E. Kimball (1949), “Random diffusion-controlled reaction rates,” J. Colloid Sci., 4, 425–437.CrossRef
go back to reference Costantini, C., B. Pacchiarotti, and F. Sartoretto (1998, “Numerical approximation for functionals of reflecting diffusion processes,” SIAM J. Appl. Math., 58 (1), 73–102). Costantini, C., B. Pacchiarotti, and F. Sartoretto (1998, “Numerical approximation for functionals of reflecting diffusion processes,” SIAM J. Appl. Math., 58 (1), 73–102).
go back to reference Dzougoutov, A., K.-S. Moon, E. von Schwerin, A. Szepessy, and R. Tempone (2005), “Adaptive Monte Carlo Algorithms for Stopped Diffusion,” in Multiscale Methods in Science and Engineering, volume 44 of Lect. Notes Comput. Sci. Eng., Springer-Verlag, Berlin. pp. 59–88. Dzougoutov, A., K.-S. Moon, E. von Schwerin, A. Szepessy, and R. Tempone (2005), “Adaptive Monte Carlo Algorithms for Stopped Diffusion,” in Multiscale Methods in Science and Engineering, volume 44 of Lect. Notes Comput. Sci. Eng., Springer-Verlag, Berlin. pp. 59–88.
go back to reference Erban, R. and J. Chapman (2007), “Reactive boundary conditions for stochastic simulations of reaction–diffusion processes,” Phys. Biol., 4, 16–28.CrossRef Erban, R. and J. Chapman (2007), “Reactive boundary conditions for stochastic simulations of reaction–diffusion processes,” Phys. Biol., 4, 16–28.CrossRef
go back to reference Feller, W. (1968), An Introduction to Probability Theory and Its Applications, Volumes 1, 2. John Wiley & Sons, Paperback, NY, 3rd edition. Feller, W. (1968), An Introduction to Probability Theory and Its Applications, Volumes 1, 2. John Wiley & Sons, Paperback, NY, 3rd edition.
go back to reference Friedman, A. (2008), Partial Differential Equations, Dover Publications, NY. Friedman, A. (2008), Partial Differential Equations, Dover Publications, NY.
go back to reference Gardiner, C.W. (1985), Handbook of Stochastic Methods, Springer-Verlag, NY, 2nd edition. Gardiner, C.W. (1985), Handbook of Stochastic Methods, Springer-Verlag, NY, 2nd edition.
go back to reference Ghoniem, A.F. and F.S. Sherman (1985), “Grid free simulation of diffusion using random walk methods,” J. Comp. Phys., 61, 1–37.MathSciNetMATHCrossRef Ghoniem, A.F. and F.S. Sherman (1985), “Grid free simulation of diffusion using random walk methods,” J. Comp. Phys., 61, 1–37.MathSciNetMATHCrossRef
go back to reference Giraudo, M.T., L. Sacerdote, and C. Zucca (2001), “A Monte Carlo Method for the Simulation of First Passage Times of Diffusion Processes.” Methodology and Computing in Applied Probability, 3 (2), pp. 215–231.MathSciNetMATHCrossRef Giraudo, M.T., L. Sacerdote, and C. Zucca (2001), “A Monte Carlo Method for the Simulation of First Passage Times of Diffusion Processes.” Methodology and Computing in Applied Probability, 3 (2), pp. 215–231.MathSciNetMATHCrossRef
go back to reference Gobet, E. (2001), “Euler schemes and half-space approximation for the simulation of diffusion in a domain,” ESAIM Probability and Statistics, 5, 261–297.MathSciNetMATHCrossRef Gobet, E. (2001), “Euler schemes and half-space approximation for the simulation of diffusion in a domain,” ESAIM Probability and Statistics, 5, 261–297.MathSciNetMATHCrossRef
go back to reference Gobet, E. and S. Menozzi (2004), “Exact approximation rate of killed hypo elliptic diffusions using the discrete Euler scheme.” Stochastic Processes and Their Applications, 112 (2), pp. 201–223.MathSciNetMATHCrossRef Gobet, E. and S. Menozzi (2004), “Exact approximation rate of killed hypo elliptic diffusions using the discrete Euler scheme.” Stochastic Processes and Their Applications, 112 (2), pp. 201–223.MathSciNetMATHCrossRef
go back to reference Goodrich, F.C. (1954), “Random walk with semiadsorbing barrier,” J. Chem. Phys., 22, 588–594.CrossRef Goodrich, F.C. (1954), “Random walk with semiadsorbing barrier,” J. Chem. Phys., 22, 588–594.CrossRef
go back to reference Green, N. J. B. (1988), “On the simulation of diffusion processes close to boundaries,” Molecular Physics, 65, (6), 1399–1408.CrossRef Green, N. J. B. (1988), “On the simulation of diffusion processes close to boundaries,” Molecular Physics, 65, (6), 1399–1408.CrossRef
go back to reference Honerkamp, J. (1994), Stochastic Dynamical Systems: Concepts, Numerical Methods, Data Analysis, VCH Publishers, NY. Honerkamp, J. (1994), Stochastic Dynamical Systems: Concepts, Numerical Methods, Data Analysis, VCH Publishers, NY.
go back to reference Jansons, K.M. and G.D. Lythe (2006), “Multidimensional Exponential Time Stepping with Boundary Test.” SIAM J. Sci. Comput. 27 (3), 793808. Jansons, K.M. and G.D. Lythe (2006), “Multidimensional Exponential Time Stepping with Boundary Test.” SIAM J. Sci. Comput. 27 (3), 793808.
go back to reference Karlin, S. and H.M. Taylor (1981), A Second Course in Stochastic Processes, Academic Press, NY, 2nd edition. Karlin, S. and H.M. Taylor (1981), A Second Course in Stochastic Processes, Academic Press, NY, 2nd edition.
go back to reference Kloeden, P.E. and E. Platen (1992), Numerical Solution of Stochastic Differential Equations, Springer-Verlag, NY.MATHCrossRef Kloeden, P.E. and E. Platen (1992), Numerical Solution of Stochastic Differential Equations, Springer-Verlag, NY.MATHCrossRef
go back to reference Knessl, C., B.J. Matkowsky, Z. Schuss, and C. Tier (1985), “An asymptotic theory of large deviations for Markov jump processes,” SIAM J. Appl. Math., 45, 1006–1028.MathSciNetMATHCrossRef Knessl, C., B.J. Matkowsky, Z. Schuss, and C. Tier (1985), “An asymptotic theory of large deviations for Markov jump processes,” SIAM J. Appl. Math., 45, 1006–1028.MathSciNetMATHCrossRef
go back to reference Knessl, C., B.J. Matkowsky, Z. Schuss, and C. Tier (1986a), “Boundary behavior of diffusion approximations to Markov jump processes,” J. Stat. Phys., 45, 245–266.MathSciNetMATHCrossRef Knessl, C., B.J. Matkowsky, Z. Schuss, and C. Tier (1986a), “Boundary behavior of diffusion approximations to Markov jump processes,” J. Stat. Phys., 45, 245–266.MathSciNetMATHCrossRef
go back to reference Knessl, C., B.J. Matkowsky, Z. Schuss, and C. Tier (1986b), “A singular perturbations approach to first passage times for Markov jump processes,” J. Stat. Phys., 42, 169–184.MathSciNetMATHCrossRef Knessl, C., B.J. Matkowsky, Z. Schuss, and C. Tier (1986b), “A singular perturbations approach to first passage times for Markov jump processes,” J. Stat. Phys., 42, 169–184.MathSciNetMATHCrossRef
go back to reference Lamm, G. and K. Schulten (1983), “Extended Brownian dynamics, II. Reactive, nonlinear diffusion,” J. Chem. Phys., 78 (5), 2713–2734. Lamm, G. and K. Schulten (1983), “Extended Brownian dynamics, II. Reactive, nonlinear diffusion,” J. Chem. Phys., 78 (5), 2713–2734.
go back to reference Lépingle, D. (1995), “Euler scheme for reflected stochastic differential equations,” Mathematics and Computers in Simulation, 38, 119–126.MathSciNetMATHCrossRef Lépingle, D. (1995), “Euler scheme for reflected stochastic differential equations,” Mathematics and Computers in Simulation, 38, 119–126.MathSciNetMATHCrossRef
go back to reference Mandl, P. (1968), Analytical Treatment of One-Dimensional Markov Processes, Springer-Verlag, NY.MATH Mandl, P. (1968), Analytical Treatment of One-Dimensional Markov Processes, Springer-Verlag, NY.MATH
go back to reference Mannella, R. (1999), “Absorbing boundaries and optimal stopping in a stochastic differential equation,” Phys. Lett. A., 254 (5), 257–262.MathSciNetMATHCrossRef Mannella, R. (1999), “Absorbing boundaries and optimal stopping in a stochastic differential equation,” Phys. Lett. A., 254 (5), 257–262.MathSciNetMATHCrossRef
go back to reference Mannella, R. (2002), “Integration of stochastic differential equations on a computer,” International Journal of Modern Physics C, 13 (9), 1177–1194.MATHCrossRef Mannella, R. (2002), “Integration of stochastic differential equations on a computer,” International Journal of Modern Physics C, 13 (9), 1177–1194.MATHCrossRef
go back to reference Marchewka, A. and Z. Schuss (2000), “Path integral approach to the Schrödinger current,” Phys. Rev. A, 61, 052107.CrossRef Marchewka, A. and Z. Schuss (2000), “Path integral approach to the Schrödinger current,” Phys. Rev. A, 61, 052107.CrossRef
go back to reference Milshtein, G.N. (1976), “A method of second-order accuracy integration of stochastic differential equations,” Theory of Probability and Applications, 23, 396–401.CrossRef Milshtein, G.N. (1976), “A method of second-order accuracy integration of stochastic differential equations,” Theory of Probability and Applications, 23, 396–401.CrossRef
go back to reference Milstein, G.N. (1995), Numerical Integration of Stochastic Differential Equations, (Mathematics and Its Applications). Kluwer, Dordrecht, paperback edition. Milstein, G.N. (1995), Numerical Integration of Stochastic Differential Equations, (Mathematics and Its Applications). Kluwer, Dordrecht, paperback edition.
go back to reference Milstein, G.N. and M.V. Tretyakov (2004), Stochastic Numerics for Mathematical Physics. Springer Verlag, Berlin.MATHCrossRef Milstein, G.N. and M.V. Tretyakov (2004), Stochastic Numerics for Mathematical Physics. Springer Verlag, Berlin.MATHCrossRef
go back to reference Monine, M.I. and J.M. Haugh (2005), “Reactions on cell membranes: Comparison of continuum theory and Brownian dynamics simulations,” J. Chem. Phys., 123, 074908.CrossRef Monine, M.I. and J.M. Haugh (2005), “Reactions on cell membranes: Comparison of continuum theory and Brownian dynamics simulations,” J. Chem. Phys., 123, 074908.CrossRef
go back to reference Noble, B. (1988), Methods Based on the Wiener-Hopf Technique for the Solution of Partial Differential Equations, AMS/Chelsea Publication. Noble, B. (1988), Methods Based on the Wiener-Hopf Technique for the Solution of Partial Differential Equations, AMS/Chelsea Publication.
go back to reference Peters, E.A.J.F. and Th.M.A.O.M. Barenbrug (2002), “Efficient Brownian dynamics simulation of particles near walls. I. Reflecting and absorbing walls,” Phys. Rev. E, 66, 056701. Peters, E.A.J.F. and Th.M.A.O.M. Barenbrug (2002), “Efficient Brownian dynamics simulation of particles near walls. I. Reflecting and absorbing walls,” Phys. Rev. E, 66, 056701.
go back to reference Schumaker, M. (2002), “Boundary conditions and trajectories of diffusion processes,” J. Chem. Phys., 117, 2469–2473.CrossRef Schumaker, M. (2002), “Boundary conditions and trajectories of diffusion processes,” J. Chem. Phys., 117, 2469–2473.CrossRef
go back to reference Schuss, Z. (2010b), Theory and Applications of Stochastic Processes, and Analytical Approach, Springer series on Applied Mathematical Sciences 170, NY. Schuss, Z. (2010b), Theory and Applications of Stochastic Processes, and Analytical Approach, Springer series on Applied Mathematical Sciences 170, NY.
go back to reference Singer, A. and Z. Schuss (2005), “Brownian simulations and unidirectional flux in diffusion,” Phys. Rev. E, 71, 026115.CrossRef Singer, A. and Z. Schuss (2005), “Brownian simulations and unidirectional flux in diffusion,” Phys. Rev. E, 71, 026115.CrossRef
go back to reference Singer, A., Z. Schuss, and D. Holcman (2006c), “Narrow escape, Part III: Non-smooth domains and Riemann surfaces,” J. Stat. Phys., 122 (3), 491–509.MathSciNetMATHCrossRef Singer, A., Z. Schuss, and D. Holcman (2006c), “Narrow escape, Part III: Non-smooth domains and Riemann surfaces,” J. Stat. Phys., 122 (3), 491–509.MathSciNetMATHCrossRef
go back to reference Singer, A., Z. Schuss, A. Osipov, and D. Holcman (2008), “Partially absorbed diffusion,” SIAM J. Appl. Math., 68 (3), 844–868.MathSciNetMATHCrossRef Singer, A., Z. Schuss, A. Osipov, and D. Holcman (2008), “Partially absorbed diffusion,” SIAM J. Appl. Math., 68 (3), 844–868.MathSciNetMATHCrossRef
go back to reference Skorokhod, A.V. (1961), “Stochastic equations for diffusion processes in a bounded region,” Theory of Probability and Applications, 6 (3), 264–274.CrossRef Skorokhod, A.V. (1961), “Stochastic equations for diffusion processes in a bounded region,” Theory of Probability and Applications, 6 (3), 264–274.CrossRef
go back to reference Smoluchowski, M. von (1916), “Drei Vorträge über Diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen,” Phys. Zeits., 17, 557–571. Smoluchowski, M. von (1916), “Drei Vorträge über Diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen,” Phys. Zeits., 17, 557–571.
go back to reference Song, Y., Y. Zhang, T. Shen, C.L. Bajaj, J.A. McCammon, and N.A. Baker (2004), “Finite element solution of the steady-state Smoluchowski equation for rate constant calculations,” Biophys. J., 86, 2017–2029.CrossRef Song, Y., Y. Zhang, T. Shen, C.L. Bajaj, J.A. McCammon, and N.A. Baker (2004), “Finite element solution of the steady-state Smoluchowski equation for rate constant calculations,” Biophys. J., 86, 2017–2029.CrossRef
go back to reference Szymczak, P. and A.J.C. Ladd (2003), “Boundary conditions for stochastic solutions of the convection-diffusion equation,” Phys. Rev. E, 68, 036704.MathSciNetCrossRef Szymczak, P. and A.J.C. Ladd (2003), “Boundary conditions for stochastic solutions of the convection-diffusion equation,” Phys. Rev. E, 68, 036704.MathSciNetCrossRef
go back to reference Tai, K., S.D. Bond, H.R. MacMillan, N.A. Baker, M.J. Holst, and J.A. McCammon (2003), “Finite element simulations of acetylcholine diffusion in neuromuscular junctions,” Biophys. J., 84, 2234–2241.CrossRef Tai, K., S.D. Bond, H.R. MacMillan, N.A. Baker, M.J. Holst, and J.A. McCammon (2003), “Finite element simulations of acetylcholine diffusion in neuromuscular junctions,” Biophys. J., 84, 2234–2241.CrossRef
go back to reference Zwanzig, R. (1973), “Nonlinear generalized Langevin equations,” J. Stat. Phys., 9, 215–220.CrossRef Zwanzig, R. (1973), “Nonlinear generalized Langevin equations,” J. Stat. Phys., 9, 215–220.CrossRef
Metadata
Title
Euler’s Scheme and Wiener’s Measure
Author
Zeev Schuss
Copyright Year
2013
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-7687-0_2