Skip to main content
Top

2024 | OriginalPaper | Chapter

Evaluating Damage-Sensitive Features for Stiffness Loss Detection in an Aircraft Component Using Machine Learning Classifiers

Authors : Nathan Doshi, Emmett Lepp, Christopher Sowinski, Thomas J. Matarazzo, Andrew Bellocchio, Danny Parker

Published in: Topics in Modal Analysis & Parameter Identification, Vol. 9

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The ultimate goal of this study is to produce a data-driven monitoring system that provides advantages over current methods for identifying structural damage on an aircraft component. Two types of damage-sensitive features (DSFs) were tested in an experimental setting to evaluate their ability to detect a small change in flexural stiffness in a particular, frame-like aircraft component. The vibration-based monitoring system utilized two DSFs: one based on spectral distancing metrics and another based on spectral peak characteristics. This system was developed to discover damage classified as the loss of stiffness at connections by comparing experimental aircraft component data to a healthy baseline. The DSFs were fed to a support vector machine redundant learning model to provide a damage decision. The results of this decision were compared to the known damage case of the test to evaluate the true positive rate and true negative rate of the classification method for the model. The DSF based on spectral distancing metrics had 70.4% true positive and 81.3% true negative rates for a 2.5% reduction in bending stiffness at the location of most likely damage. The second DSF based on spectral peak characteristics had 100% true positive and 100% true negative rates for the same reduction in bending stiffness. This system shows potential for a simple, accurate, efficient, and cost-effective inspection technique for this particular type of damage, meant to simulate crack propagation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
3.
go back to reference Villacorta, J.J., et al.: Design and validation of a scalable, reconfigurable and low-cost structural health monitoring system. (2021). https:// doi.org/10.3390/s21020648 Villacorta, J.J., et al.: Design and validation of a scalable, reconfigurable and low-cost structural health monitoring system. (2021). https:// doi.org/10.3390/s21020648
4.
go back to reference Parker, D., Bernal, D.: SHM Short Course. PM FARA. Redstone Arsenal, Alabama (2022) Parker, D., Bernal, D.: SHM Short Course. PM FARA. Redstone Arsenal, Alabama (2022)
8.
go back to reference Etherington, T.R.: Mahalanobis distances for ecological niche modelling and outlier detection: implications of sample size, error, and bias for selecting and parameterising a multivariate location and scatter method. PeerJ. 11(9), e11436 (2021 May). https://doi.org/10.7717/peerj.11436 Etherington, T.R.: Mahalanobis distances for ecological niche modelling and outlier detection: implications of sample size, error, and bias for selecting and parameterising a multivariate location and scatter method. PeerJ. 11(9), e11436 (2021 May). https://​doi.​org/​10.​7717/​peerj.​11436
Metadata
Title
Evaluating Damage-Sensitive Features for Stiffness Loss Detection in an Aircraft Component Using Machine Learning Classifiers
Authors
Nathan Doshi
Emmett Lepp
Christopher Sowinski
Thomas J. Matarazzo
Andrew Bellocchio
Danny Parker
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-68180-6_6

Premium Partners