Skip to main content
Top
Published in: Mechanics of Composite Materials 4/2023

04-09-2023

Evaluating the Local Strengh and Crack Resistance of an Glass Fiber Epoxy Composite in the Interlayer Tension and Shear Using a Finite-Element Model and Experimentally Determined Parameters of the Cohesive Zone

Authors: P. G. Babaevsky, N. V. Salienko, A. A. Shatalin

Published in: Mechanics of Composite Materials | Issue 4/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A systematic evaluation of the interlayer crack resistance in the modes I and II loadings of a glass fiber epoxy laminated composite by experimental and computational methods using the cohesive zone model was carried out. The local properties (the ultimate stress σC, the maximum displacement δmax, and the specific work of fracture γF) of the cohesive zone were determined experimentally by the methods of separation and shear of the layer contact zone; the critical intensities of elastic energy release (GIC and GIIC) were found by the method of linear elastic fracture mechanics. Based on the experimental data obtained, the critical length of the cohesive zone was calculated by the Barenblatt micromechanical theory. A numerical evaluation of the crack resistance of a laminated composite under conditions of static loading in the modes I and II was carried out using 3D finite-element models of a double-cantilever beam and end-notched flexure specimens with an implemented cohesive zone obeying the exponential law. The optimal number of interface elements in the finite-element mesh was determined for the cohesive zone calculated based on experimental data, which ensured a sufficient accuracy of numerical calculating the ultimate load of the onset of crack growth and the stress distribution along the length of the cohesive zone with a minimum number of calculations. The approach proposed and the results obtained showed a good agreement between the calculated and experimentally determined characteristics of standard specimens of glass fiber epoxy composite and can be used to calculate the interlayer strength and crack resistance of structural members with a complex geometry made of layered polymer composites.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A. I. Preobrazhensky, “Glass-fiber-reinforced plastics: properties, technologies, and application,” Glavnyi Mekhanik, No. 5, 27-36 (2010). A. I. Preobrazhensky, “Glass-fiber-reinforced plastics: properties, technologies, and application,” Glavnyi Mekhanik, No. 5, 27-36 (2010).
2.
go back to reference T. P. Sathishkumar, S. Satheeshkumar, and J. Naveen, “Fiberglass-reinforced polymer composites — a review,” J. Reinf. Plastics and Compos., 33, No. 13, 1258-1275 (2014).CrossRef T. P. Sathishkumar, S. Satheeshkumar, and J. Naveen, “Fiberglass-reinforced polymer composites — a review,” J. Reinf. Plastics and Compos., 33, No. 13, 1258-1275 (2014).CrossRef
3.
go back to reference A. N. Vorontsov, G. Kh. Murzakhanov, and V. N. Shchugorov, “Delamination failure of composite structure,” Mech. Compos. Mater., 6, 1007-1023 (1989). A. N. Vorontsov, G. Kh. Murzakhanov, and V. N. Shchugorov, “Delamination failure of composite structure,” Mech. Compos. Mater., 6, 1007-1023 (1989).
4.
go back to reference H. B. Kahla, Z. Ayadi, and J. Varna, “Local delaminations induced by interaction between intralaminar cracking and specimen edge in quasi-isotropic CF/EP NCF composites in fatigue loadings,” Mech. Compos. Mater., 56, No. 3, 291-302 (2020).CrossRef H. B. Kahla, Z. Ayadi, and J. Varna, “Local delaminations induced by interaction between intralaminar cracking and specimen edge in quasi-isotropic CF/EP NCF composites in fatigue loadings,” Mech. Compos. Mater., 56, No. 3, 291-302 (2020).CrossRef
5.
go back to reference V. E. Strizhius, “A methodology for estimating the delamination growth rate in layered composites under tensile cyclic loading,” Mech. Compos. Mater., 56, No. 4, 533-540 (2020).CrossRef V. E. Strizhius, “A methodology for estimating the delamination growth rate in layered composites under tensile cyclic loading,” Mech. Compos. Mater., 56, No. 4, 533-540 (2020).CrossRef
6.
go back to reference L. Wang, C. Zheng, H. Luo, S. Wei, and Z. Wei, “Continuum damage modeling and progressive failure analysis of carbon fiber/epoxy composite pressure vessel,” Heavy Castings and Forgings, 475-480 (2015). L. Wang, C. Zheng, H. Luo, S. Wei, and Z. Wei, “Continuum damage modeling and progressive failure analysis of carbon fiber/epoxy composite pressure vessel,” Heavy Castings and Forgings, 475-480 (2015).
7.
go back to reference T. K. O’Brien, “Development of a composite delamination fatigue life prediction methodology,” NASA Technical Reports Server, 1-9 (2009). T. K. O’Brien, “Development of a composite delamination fatigue life prediction methodology,” NASA Technical Reports Server, 1-9 (2009).
8.
go back to reference J. Bertolini, B. Castanié, J. J. Barrau, and J. P. Navarro, “Multi-level experimental and numerical analysis of composite stiffener debonding,” Part 1, Nonspecific Specimen Level, Composite Structures, 90, 381-391 (2009); Part 2, Element and Panel Level, Compos. Struct., 90, 392-403 (2009). J. Bertolini, B. Castanié, J. J. Barrau, and J. P. Navarro, “Multi-level experimental and numerical analysis of composite stiffener debonding,” Part 1, Nonspecific Specimen Level, Composite Structures, 90, 381-391 (2009); Part 2, Element and Panel Level, Compos. Struct., 90, 392-403 (2009).
9.
go back to reference P. Babaevsky and S. Kulik, Crack Resistance of Cured Polymer Compositions [in Russian], Khimiya, Moscow (1991). P. Babaevsky and S. Kulik, Crack Resistance of Cured Polymer Compositions [in Russian], Khimiya, Moscow (1991).
10.
go back to reference A. J. Brunner, B. R. K. Blackman, and P. Davies, “A status report on delamination resistance testing of polymer matrix composites,” Eng. Fracture Mech., 75, 2779-2794 (2008).CrossRef A. J. Brunner, B. R. K. Blackman, and P. Davies, “A status report on delamination resistance testing of polymer matrix composites,” Eng. Fracture Mech., 75, 2779-2794 (2008).CrossRef
11.
go back to reference V. M. Mirsalimov, “Modeling the initiation and propagation of cracks in a fibrous composite under loading across fibers,” Mech. Compos. Mater., 56, No. 6, 721-734 (2021).CrossRef V. M. Mirsalimov, “Modeling the initiation and propagation of cracks in a fibrous composite under loading across fibers,” Mech. Compos. Mater., 56, No. 6, 721-734 (2021).CrossRef
12.
go back to reference V. D. Krylov, N. O. Yakovlev, Yu. A. Kurganova, and O. A. Lashov, “Interlayer crack resistance of structural polymer composite materials,” Aviats. Mater.Tekhnologii, 40, No. 1, 79-85 (2016). V. D. Krylov, N. O. Yakovlev, Yu. A. Kurganova, and O. A. Lashov, “Interlayer crack resistance of structural polymer composite materials,” Aviats. Mater.Tekhnologii, 40, No. 1, 79-85 (2016).
13.
go back to reference N. Trivedi, S. Das, and E.-M. Craciun, “The mathematical study of an edge crack in two different specified models under time-harmonic wave disturbance,” Mech. Compos. Mater., 58, No. 1, 1-14 (2022).CrossRef N. Trivedi, S. Das, and E.-M. Craciun, “The mathematical study of an edge crack in two different specified models under time-harmonic wave disturbance,” Mech. Compos. Mater., 58, No. 1, 1-14 (2022).CrossRef
14.
go back to reference R. Krueger, “Virtual crack closure technique: History, approach, and applications,” Appl. Mech. Rev., 57, No. 2, (2004). R. Krueger, “Virtual crack closure technique: History, approach, and applications,” Appl. Mech. Rev., 57, No. 2, (2004).
15.
go back to reference E. Pietropaoli, “Virtual crack closure technique and finite-element method for predicting the delamination grows initiation in composite structures,” Intechopen.com (2008). E. Pietropaoli, “Virtual crack closure technique and finite-element method for predicting the delamination grows initiation in composite structures,” Intechopen.com (2008).
16.
go back to reference A. Hillerborg, M. Modéer, and P. Petersson, “Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements,” Cement Concrete Res., 6, No. 6, 773 (1976). A. Hillerborg, M. Modéer, and P. Petersson, “Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements,” Cement Concrete Res., 6, No. 6, 773 (1976).
17.
go back to reference G. Alfano and M. Crisfield, “Finite-element interface models for the delamination analysis of laminated composites: mechanical and computational issues,” Int. J. Numerical Methods in Eng., 50, No. 7, 1701-1736 (2001).CrossRef G. Alfano and M. Crisfield, “Finite-element interface models for the delamination analysis of laminated composites: mechanical and computational issues,” Int. J. Numerical Methods in Eng., 50, No. 7, 1701-1736 (2001).CrossRef
18.
go back to reference A. Turon, C. G. Dávila, P. P. Camanho, and J. Costa, “An Engineering solution for using coarse meshes in the simulation of delamination with cohesive zone models,” NASA/TM, 213547 (2005). A. Turon, C. G. Dávila, P. P. Camanho, and J. Costa, “An Engineering solution for using coarse meshes in the simulation of delamination with cohesive zone models,” NASA/TM, 213547 (2005).
19.
go back to reference P. Harper and S. Hallett, “Cohesive zone length in numerical simulations of composite delamination,” Eng. Fract. Mech., 75, No. 16, 4774-4792 (2008).CrossRef P. Harper and S. Hallett, “Cohesive zone length in numerical simulations of composite delamination,” Eng. Fract. Mech., 75, No. 16, 4774-4792 (2008).CrossRef
20.
go back to reference P. Harper and S. R. Hallett, “A fatigue degradation law for cohesive interface elements — Development and application for composite materials,” Int. J. Fatigue, 32, 1774-1787 (2010).CrossRef P. Harper and S. R. Hallett, “A fatigue degradation law for cohesive interface elements — Development and application for composite materials,” Int. J. Fatigue, 32, 1774-1787 (2010).CrossRef
21.
go back to reference B. Cox and Q. Yang, “Cohesive models for damage evolution in laminated composites,” Int. J. Fract., 107-137 (2005). B. Cox and Q. Yang, “Cohesive models for damage evolution in laminated composites,” Int. J. Fract., 107-137 (2005).
22.
go back to reference Moslemi M., Khoshravan M. Cohesive zone parameters selection for mode I prediction of interfacial delamination,” J. Mech. Eng., 61, No. 9, 507 (2015). Moslemi M., Khoshravan M. Cohesive zone parameters selection for mode I prediction of interfacial delamination,” J. Mech. Eng., 61, No. 9, 507 (2015).
23.
go back to reference P. G. Babayevsky, N. V. Salienko, and G. V. Novikov, “Use of experimentally determined parameters of the cohesive zone in the numerical evaluation of the resistance to delamination of polymer composites materials,” Inorg. Mater. Appl. Res., 10, No. 5, 1259 (2019). P. G. Babayevsky, N. V. Salienko, and G. V. Novikov, “Use of experimentally determined parameters of the cohesive zone in the numerical evaluation of the resistance to delamination of polymer composites materials,” Inorg. Mater. Appl. Res., 10, No. 5, 1259 (2019).
24.
go back to reference G. I. Barenblatt, “The mathematical theory of equilibrium cracks in brittle fracture,” Adv. Appl. Mech.,7, 55 (1962)CrossRef G. I. Barenblatt, “The mathematical theory of equilibrium cracks in brittle fracture,” Adv. Appl. Mech.,7, 55 (1962)CrossRef
25.
go back to reference Z. Z. Wang, J. Zhao, X. Ma, S. J. Wang, and X. Yang, “Numerical simulation of progressive delamination in composite laminates under mode I and mode II loadings,” Mech. Compos. Mater., 56, No. 6, 735-746 (2021).CrossRef Z. Z. Wang, J. Zhao, X. Ma, S. J. Wang, and X. Yang, “Numerical simulation of progressive delamination in composite laminates under mode I and mode II loadings,” Mech. Compos. Mater., 56, No. 6, 735-746 (2021).CrossRef
26.
go back to reference S. Masooda, A. Singh, and S. Viswamurthy, “Simulation & validation of delamination growth in CFRP specimens under mixed mode loading using cohesive elements,” Proceedings of 14th ISAMPE National Conference on Composites (INCCOM-14), Hyderabad (2016). S. Masooda, A. Singh, and S. Viswamurthy, “Simulation & validation of delamination growth in CFRP specimens under mixed mode loading using cohesive elements,” Proceedings of 14th ISAMPE National Conference on Composites (INCCOM-14), Hyderabad (2016).
27.
go back to reference GOST 19170-2001. Fiberglass. Construction fabric. Specifications, Standards Publishing House, Minsk. GOST 19170-2001. Fiberglass. Construction fabric. Specifications, Standards Publishing House, Minsk.
28.
go back to reference Yu. M. Tarnopolsky and T. Ya. Kintsis, Methods of Static Testing of Reinforced Plastics [in Russian], Khimiya, Moscow (1981). Yu. M. Tarnopolsky and T. Ya. Kintsis, Methods of Static Testing of Reinforced Plastics [in Russian], Khimiya, Moscow (1981).
29.
go back to reference Standard 56815-2015. Polymer composites. Method for determination of the specific work of exfoliation in tearing off conditions GIC, Standardinform, Moscow. Standard 56815-2015. Polymer composites. Method for determination of the specific work of exfoliation in tearing off conditions GIC, Standardinform, Moscow.
30.
go back to reference Standard 33685-2015. polymer composites. Test method for determination of the interlaminar fracture toughness under shear GIIC, Standardinform, Moscow. Standard 33685-2015. polymer composites. Test method for determination of the interlaminar fracture toughness under shear GIIC, Standardinform, Moscow.
31.
go back to reference M. Moslemi and M. K. Azar, “Delamination analysis of woven fabrication laminates using cohesive zone model,” J. Cent. South Univ., 23, 27-38 (2016).CrossRef M. Moslemi and M. K. Azar, “Delamination analysis of woven fabrication laminates using cohesive zone model,” J. Cent. South Univ., 23, 27-38 (2016).CrossRef
32.
go back to reference GOST 56805-2015. Polymer composites. Methods for determining mechanical characteristics in bending, Standartinform, Moscow. GOST 56805-2015. Polymer composites. Methods for determining mechanical characteristics in bending, Standartinform, Moscow.
Metadata
Title
Evaluating the Local Strengh and Crack Resistance of an Glass Fiber Epoxy Composite in the Interlayer Tension and Shear Using a Finite-Element Model and Experimentally Determined Parameters of the Cohesive Zone
Authors
P. G. Babaevsky
N. V. Salienko
A. A. Shatalin
Publication date
04-09-2023
Publisher
Springer US
Published in
Mechanics of Composite Materials / Issue 4/2023
Print ISSN: 0191-5665
Electronic ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-023-10126-6

Other articles of this Issue 4/2023

Mechanics of Composite Materials 4/2023 Go to the issue

Premium Partners