Skip to main content
Top

20-05-2024

Evaluating the Performance of Machine Learning Algorithm for Classification of Safer Sexual Negotiation among Married Women in Bangladesh

Authors: Md. Mizanur Rahman, Deluar J. Moloy, Mashfiqul Huq Chowdhury, Arzo Ahmed, Taksina Kabir

Published in: Annals of Data Science

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Safer sexual practice is essential for improving women’s reproductive and sexual health outcomes. The goal of this study is to identify the contributing factors influencing safer sexual negotiations (SSN) through the application of machine learning algorithms. The algorithms include logistic regression (LR), random forest, Naïve Bayes, linear discriminant analysis, classification and regression trees, support vector machines (SVM), and K-nearest neighbors. This study utilized data from the 2017-18 Bangladesh Demographic and Health Survey, encompassing 19,457 married women within the ages of 15–49 years. The analysis reveals that the SVM algorithm achieved the highest classification accuracy (99.66%), along with high sensitivity (99.98%) and the lowest specificity. Conversely, the LR model produced the highest area under the curve statistics (0.6699), indicating good performance in distinguishing SSN among married women. The outcome illustrated that women’s autonomy, engagement with financial institutions, educational attainment, and their partner’s education play a significant role in SSN with their partners. The findings highlight the significance of empowering women, enhancing reproductive health awareness, and improving socio-economic conditions and education to encourage SSN. The government needs to consider all these risk factors to promote greater SSN for preventing sexually transmitted diseases among women in Bangladesh.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
5.
go back to reference Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees. California, USA Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees. California, USA
11.
go back to reference Gao Y, Lin J, Zhou Y, Lin R (2023) The application of traditional machine learning and deep learning techniques in mammography: a review. Front Oncol 13:1213045. https://doi.org/10.3389%2Ffonc.2023.1213045CrossRef Gao Y, Lin J, Zhou Y, Lin R (2023) The application of traditional machine learning and deep learning techniques in mammography: a review. Front Oncol 13:1213045. https://​doi.​org/​10.​3389%2Ffonc.2023.1213045CrossRef
14.
go back to reference Huda MN, Ahmed MU, Uddin MB, Hasan MK, Uddin J, Dune TM (2022) Prevalence and demographic, socioeconomic, and behavioral risk factors of self-reported symptoms of sexually transmitted infections (STIs) among ever-married women: Evidence from Nationally representative surveys in Bangladesh. International Journal of Environmental Research and Public Health 19:1906. https://doi.org/10.3390/ijerph19031906 Huda MN, Ahmed MU, Uddin MB, Hasan MK, Uddin J, Dune TM (2022) Prevalence and demographic, socioeconomic, and behavioral risk factors of self-reported symptoms of sexually transmitted infections (STIs) among ever-married women: Evidence from Nationally representative surveys in Bangladesh. International Journal of Environmental Research and Public Health 19:1906. https://​doi.​org/​10.​3390/​ijerph19031906
19.
go back to reference Liaw A, Wiener M (2002) Classification and regression by random forest. R news 2:18–22 Liaw A, Wiener M (2002) Classification and regression by random forest. R news 2:18–22
22.
go back to reference McLachlan GJ (2005) Discriminant analysis and statistical pattern recognition. Wiley, Hoboken, New Jersey McLachlan GJ (2005) Discriminant analysis and statistical pattern recognition. Wiley, Hoboken, New Jersey
25.
go back to reference Olson DL, Shi Y (2007) Introduction to business data mining. McGraw-Hill/Irwin, New York Olson DL, Shi Y (2007) Introduction to business data mining. McGraw-Hill/Irwin, New York
32.
go back to reference Shi Y (2022) Advances in Big Data Analytics: theory, Algorithm and Practice. Springer, SingaporeCrossRef Shi Y (2022) Advances in Big Data Analytics: theory, Algorithm and Practice. Springer, SingaporeCrossRef
33.
go back to reference Shi Y, Tian YJ, Kou G, Peng Y, Li JP (2011) Optimization based data mining: theory and applications. Springer, BerlinCrossRef Shi Y, Tian YJ, Kou G, Peng Y, Li JP (2011) Optimization based data mining: theory and applications. Springer, BerlinCrossRef
35.
go back to reference Tharwat A, Gaber T, Awad YM, Dey N, Hassanien AE (2016) Plants identification using feature fusion technique and bagging classifier. In The 1st International Conference on Advanced Intelligent System and Informatics (AISI2015), November 28–30, 2015, Beni Suef, Egypt 407:461–471. https://doi.org/10.1007/978-3-319-26690-9_41 Tharwat A, Gaber T, Awad YM, Dey N, Hassanien AE (2016) Plants identification using feature fusion technique and bagging classifier. In The 1st International Conference on Advanced Intelligent System and Informatics (AISI2015), November 28–30, 2015, Beni Suef, Egypt 407:461–471. https://​doi.​org/​10.​1007/​978-3-319-26690-9_​41
38.
go back to reference Vembandasamy K, Sasipriya R, Deepa E (2015) Heart diseases detection using Naïve Bayes algorithm. Int J Innovative Sci Eng Technol 2:441–444 Vembandasamy K, Sasipriya R, Deepa E (2015) Heart diseases detection using Naïve Bayes algorithm. Int J Innovative Sci Eng Technol 2:441–444
Metadata
Title
Evaluating the Performance of Machine Learning Algorithm for Classification of Safer Sexual Negotiation among Married Women in Bangladesh
Authors
Md. Mizanur Rahman
Deluar J. Moloy
Mashfiqul Huq Chowdhury
Arzo Ahmed
Taksina Kabir
Publication date
20-05-2024
Publisher
Springer Berlin Heidelberg
Published in
Annals of Data Science
Print ISSN: 2198-5804
Electronic ISSN: 2198-5812
DOI
https://doi.org/10.1007/s40745-024-00535-2

Premium Partner