Skip to main content
Top
Published in: Mechanics of Composite Materials 3/2022

18-07-2022

Evaluation and Modeling of Tensile Properties of Chopped Carbon Fiber Tapes Reinforced Thermoplastics of Different Tape Thicknesses

Authors: Y. Wan, Sh. Yamashita, J. Takahashi

Published in: Mechanics of Composite Materials | Issue 3/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The mechanical properties of carbon fiber sheet molding compounds (CF-SMCs) are sensitive to the internal geometry of the reinforcing fibers. In this study, novel CF-SMCs with outstanding mechanical performance, namely, chopped carbon fiber tapes reinforced thermoplastics (CTTs), were fabricated using tapes with different thicknesses. The effects of the tape morphology on the tensile properties of the CTTs were evaluated both experimentally and analytically. Two X-ray-aided computed tomography (CT) based methods were adopted to analyze the effects of the tape thickness on the internal geometry of the CTTs. The modified Mori–Tanaka model was used based on the fiber orientation data obtained from the X-ray micro-CT analyses. The results showed that the tensile properties decreased significantly with an increase of the out-of-plane misorientation, which is more intensive for thicker tapes. In addition, the tensile properties showed greater variations as the tape thickness was increased. The two X-ray micro-CT methods were found to be suitable for visualizing and quantitatively analyzing the internal geometries. Correlations were found between the tape thickness and the tensile properties. Finally, the results of the simulations performed using the Mori–Tanaka model and the fiber orientation data were found to be similar to those of the experiments in tensile moduli, but the results for strength deviate from the experiments.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference P. Feraboli, E. Peitso, T. Cleveland, and P. B. Stickler, “modulus measurement for prepreg-based discontinuous carbon fiber/epoxy systems,” J. Compos. Mater., 43, No. 19, 1947-1965, (2009).CrossRef P. Feraboli, E. Peitso, T. Cleveland, and P. B. Stickler, “modulus measurement for prepreg-based discontinuous carbon fiber/epoxy systems,” J. Compos. Mater., 43, No. 19, 1947-1965, (2009).CrossRef
2.
go back to reference P. Feraboli, E. Peitso, F. Deleo, T. Cleveland, and P. B. Stickler, “Characterization of prepreg-based discontinuous carbon fiber/epoxy systems,” J. Reinf. Plast. Comp., 28, No. 10, 1191-1214, (2009).CrossRef P. Feraboli, E. Peitso, F. Deleo, T. Cleveland, and P. B. Stickler, “Characterization of prepreg-based discontinuous carbon fiber/epoxy systems,” J. Reinf. Plast. Comp., 28, No. 10, 1191-1214, (2009).CrossRef
3.
go back to reference P. Feraboli, T. Cleveland, M. Ciccu, P. Stickler, and L. De Oto, “Defect and damage analysis of advanced discontinuous carbon/epoxy composite materials,” Compos. Part A., 41, No. 7, 888-901, (2010).CrossRef P. Feraboli, T. Cleveland, M. Ciccu, P. Stickler, and L. De Oto, “Defect and damage analysis of advanced discontinuous carbon/epoxy composite materials,” Compos. Part A., 41, No. 7, 888-901, (2010).CrossRef
4.
go back to reference P. Feraboli, T. Cleveland, P. Stickler, and J. Halpin, “Stochastic laminate analogy for simulating the variability in modulus of discontinuous composite materials,” Compos. Part A., 41, No. 4, 557-570, (2010).CrossRef P. Feraboli, T. Cleveland, P. Stickler, and J. Halpin, “Stochastic laminate analogy for simulating the variability in modulus of discontinuous composite materials,” Compos. Part A., 41, No. 4, 557-570, (2010).CrossRef
5.
go back to reference S. Pimenta and P. Robinson, “An analytical shear-lag model for composites with ‘brick-and-mortar’ architecture considering non-linear matrix response and failure,” Compos. Sci. Technol., 104, 111-124, (2014).CrossRef S. Pimenta and P. Robinson, “An analytical shear-lag model for composites with ‘brick-and-mortar’ architecture considering non-linear matrix response and failure,” Compos. Sci. Technol., 104, 111-124, (2014).CrossRef
6.
go back to reference Y. Z. Li, S. Pimenta, J. Singgih, S. Nothdurfter, and K. Schuffenhauer, “Experimental investigation of randomly-oriented tow-based discontinuous composites and their equivalent laminates,” Compos. Part A., 102, 64-75, (2017).CrossRef Y. Z. Li, S. Pimenta, J. Singgih, S. Nothdurfter, and K. Schuffenhauer, “Experimental investigation of randomly-oriented tow-based discontinuous composites and their equivalent laminates,” Compos. Part A., 102, 64-75, (2017).CrossRef
7.
go back to reference M. Selezneva and L. Lessard, “Characterization of mechanical properties of randomly oriented strand thermoplastic composites,” J. Compos. Mater., 50, No. 20, 2833-2851, (2016).CrossRef M. Selezneva and L. Lessard, “Characterization of mechanical properties of randomly oriented strand thermoplastic composites,” J. Compos. Mater., 50, No. 20, 2833-2851, (2016).CrossRef
8.
go back to reference S. B. Visweswaraiah, M. Selezneva, L. Lessard, and P. Hubert, “Mechanical characterisation and modelling of randomly oriented strand architecture and their hybrids — A general review,” J. Reinf. Plast. Comp., 37, No. 8, 548-580, (2018).CrossRef S. B. Visweswaraiah, M. Selezneva, L. Lessard, and P. Hubert, “Mechanical characterisation and modelling of randomly oriented strand architecture and their hybrids — A general review,” J. Reinf. Plast. Comp., 37, No. 8, 548-580, (2018).CrossRef
9.
go back to reference M. Selezneva, S. Roy, S. Meldrum, L. Lessard, and A. Yousefpour, “Modelling of mechanical properties of randomly oriented strand thermoplastic composites,” J. Compos. Mater., 51, No. 6, 831-845, (2017).CrossRef M. Selezneva, S. Roy, S. Meldrum, L. Lessard, and A. Yousefpour, “Modelling of mechanical properties of randomly oriented strand thermoplastic composites,” J. Compos. Mater., 51, No. 6, 831-845, (2017).CrossRef
10.
go back to reference M. Selezneva, S. Roy, L. Lessard, and A. Yousefpour, “Analytical model for prediction of strength and fracture paths characteristic to randomly oriented strand (ROS) composites,” Compos. Part B., 96, 103-111, (2016).CrossRef M. Selezneva, S. Roy, L. Lessard, and A. Yousefpour, “Analytical model for prediction of strength and fracture paths characteristic to randomly oriented strand (ROS) composites,” Compos. Part B., 96, 103-111, (2016).CrossRef
11.
go back to reference A. Jain, B. C. Jin, and S. Nutt, “Mean field homogenization methods for strand composites,” Compos. Part B., 124, 31-39, (2017).CrossRef A. Jain, B. C. Jin, and S. Nutt, “Mean field homogenization methods for strand composites,” Compos. Part B., 124, 31-39, (2017).CrossRef
12.
go back to reference S. Z. H. Shah, R. S. Choudhry, and S. Mahadzir, “A new approach for strength and stiffness prediction of discontinuous fibre reinforced composites (DFC),” Compos. Part B., 183, 107676, (2020).CrossRef S. Z. H. Shah, R. S. Choudhry, and S. Mahadzir, “A new approach for strength and stiffness prediction of discontinuous fibre reinforced composites (DFC),” Compos. Part B., 183, 107676, (2020).CrossRef
13.
go back to reference L. M. Martulli, L. Muyshondt, M. Kerschbaum, S. Pimenta, S. V. Lomov, and Y. Swolfs, “Carbon fibre sheet moulding compounds with high in-mould flow: Linking morphology to tensile and compressive properties,” Compos. Part A., 126, 105600, (2019).CrossRef L. M. Martulli, L. Muyshondt, M. Kerschbaum, S. Pimenta, S. V. Lomov, and Y. Swolfs, “Carbon fibre sheet moulding compounds with high in-mould flow: Linking morphology to tensile and compressive properties,” Compos. Part A., 126, 105600, (2019).CrossRef
14.
go back to reference L. M. Martulli, T. Creemers, E. Schöberl, N. Hale, M. Kerschbaum, S. V. Lomov, and Y. Swolfs, “A thick-walled sheet moulding compound automotive component: Manufacturing and performance,” Compos. Part A., 128, 105688, (2020).CrossRef L. M. Martulli, T. Creemers, E. Schöberl, N. Hale, M. Kerschbaum, S. V. Lomov, and Y. Swolfs, “A thick-walled sheet moulding compound automotive component: Manufacturing and performance,” Compos. Part A., 128, 105688, (2020).CrossRef
15.
go back to reference L. M. Martulli, L. Muyshondt, M. Kerschbaum, S. Pimenta, S. V. Lomov, Y. and Swolfs, “Morphology-induced fatigue crack arresting in carbon fibre sheet moulding compounds,” Int. J. Fatigue., 134, 105510, (2020). L. M. Martulli, L. Muyshondt, M. Kerschbaum, S. Pimenta, S. V. Lomov, Y. and Swolfs, “Morphology-induced fatigue crack arresting in carbon fibre sheet moulding compounds,” Int. J. Fatigue., 134, 105510, (2020).
16.
go back to reference L. M. Martulli, M. Kerschbaum, S. V. Lomov, and Y. Swolfs, “Weld lines in tow-based sheet moulding compounds tensile properties: Morphological detrimental factors,” Compos. Part A., 139, 106109, (2020).CrossRef L. M. Martulli, M. Kerschbaum, S. V. Lomov, and Y. Swolfs, “Weld lines in tow-based sheet moulding compounds tensile properties: Morphological detrimental factors,” Compos. Part A., 139, 106109, (2020).CrossRef
17.
go back to reference Y. Wan and J. Takahashi, “Tensile and compressive properties of chopped carbon fiber tapes reinforced thermoplastics with different fiber lengths and molding pressures,” Compos. Part A., 87, 271-281, (2016).CrossRef Y. Wan and J. Takahashi, “Tensile and compressive properties of chopped carbon fiber tapes reinforced thermoplastics with different fiber lengths and molding pressures,” Compos. Part A., 87, 271-281, (2016).CrossRef
18.
go back to reference S. Yamashita, K. Hashimoto, H. Suganuma, and J. Takahashi, “Experimental characterization of the tensile failure mode of ultra-thin chopped carbon fiber tape-reinforced thermoplastics,” J. Reinf. Plast. Comp., 35, No. 18, 1342-1352, (2016).CrossRef S. Yamashita, K. Hashimoto, H. Suganuma, and J. Takahashi, “Experimental characterization of the tensile failure mode of ultra-thin chopped carbon fiber tape-reinforced thermoplastics,” J. Reinf. Plast. Comp., 35, No. 18, 1342-1352, (2016).CrossRef
19.
go back to reference Y. Nakashima, S. Yamashita, X. Zhang, H. Suganuma, and J. Takahashi, “Analytical modelling of the behaviour and scatter of the flexural modulus of randomly oriented carbon fibre strand thermoplastic composites,” Compos. Struct., 178, 217-224, (2017).CrossRef Y. Nakashima, S. Yamashita, X. Zhang, H. Suganuma, and J. Takahashi, “Analytical modelling of the behaviour and scatter of the flexural modulus of randomly oriented carbon fibre strand thermoplastic composites,” Compos. Struct., 178, 217-224, (2017).CrossRef
20.
go back to reference Y. Wan, H. Suganuma, and J. Takahashi, “Effects of fabrication processes and tape thickness on tensile properties of chopped carbon fiber tape reinforced thermoplastics,” Compos. Commun., 22, 100434, (2020).CrossRef Y. Wan, H. Suganuma, and J. Takahashi, “Effects of fabrication processes and tape thickness on tensile properties of chopped carbon fiber tape reinforced thermoplastics,” Compos. Commun., 22, 100434, (2020).CrossRef
21.
go back to reference Y. Wan, I. Straumit, J. Takahashi, and S. V. Lomov, “Micro-CT analysis of internal geometry of chopped carbon fiber tapes reinforced thermoplastics,” Compos. Part A., 91, No. 1, 211-221, (2016).CrossRef Y. Wan, I. Straumit, J. Takahashi, and S. V. Lomov, “Micro-CT analysis of internal geometry of chopped carbon fiber tapes reinforced thermoplastics,” Compos. Part A., 91, No. 1, 211-221, (2016).CrossRef
22.
go back to reference Y. Wan, I. Straumit, J. Takahashi, S.V. Lomov, “Micro-CT analysis of the orientation unevenness in randomly chopped strand composites in relation to the strand length,” Compos Struct., 206, 865-875, (2018).CrossRef Y. Wan, I. Straumit, J. Takahashi, S.V. Lomov, “Micro-CT analysis of the orientation unevenness in randomly chopped strand composites in relation to the strand length,” Compos Struct., 206, 865-875, (2018).CrossRef
23.
go back to reference Y. Wan and J. Takahashi, “Tensile properties and aspect ratio simulation of transversely isotropic discontinuous carbon fiber reinforced thermoplastics,” Compos Sci Technol., 137, 167-176, (2016).CrossRef Y. Wan and J. Takahashi, “Tensile properties and aspect ratio simulation of transversely isotropic discontinuous carbon fiber reinforced thermoplastics,” Compos Sci Technol., 137, 167-176, (2016).CrossRef
24.
go back to reference Y. Wan and J. Takahashi, “Mechanical modeling of CF/PA6 sheet molding compounds with X-ray computed tomographybased internal geometry considerations,” Compos. Sci. Technol., 192, 108104, (2020).CrossRef Y. Wan and J. Takahashi, “Mechanical modeling of CF/PA6 sheet molding compounds with X-ray computed tomographybased internal geometry considerations,” Compos. Sci. Technol., 192, 108104, (2020).CrossRef
25.
go back to reference G. Advani Suresh and L. Tucker Charles, “The use of tensors to describe and predict fiber orientation in short fiber composites,” J. Rheol., 31, No. 8, 751–784, (1987).CrossRef G. Advani Suresh and L. Tucker Charles, “The use of tensors to describe and predict fiber orientation in short fiber composites,” J. Rheol., 31, No. 8, 751–784, (1987).CrossRef
Metadata
Title
Evaluation and Modeling of Tensile Properties of Chopped Carbon Fiber Tapes Reinforced Thermoplastics of Different Tape Thicknesses
Authors
Y. Wan
Sh. Yamashita
J. Takahashi
Publication date
18-07-2022
Publisher
Springer US
Published in
Mechanics of Composite Materials / Issue 3/2022
Print ISSN: 0191-5665
Electronic ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-022-10037-y

Other articles of this Issue 3/2022

Mechanics of Composite Materials 3/2022 Go to the issue

Premium Partners